Phosphorus is widely deficient throughout the southern pine region of the United States. Growth responses to P fertilization are generally long-lasting in a wide range of soil types, but little is known about fertilization rates and long-term P cycling and availability. In 1982, exceptionally high P fertilization rates (0, 81, 162, and 324 kg P ha ? 1) were applied to a loamy Ultisol in central Louisiana, USA. We measured vegetation responses at age 27 years and sequentially extracted soil P to 1 m to elucidate potential P availability into the next rotation. Loblolly pine responded well to the lowest fertilization rate; total biomass was 39% greater in the fertilized plots compared to the unfertilized plots, but higher fertilization rates had no effect, presumably due to induced N-limitations. What little fertilizer P was found in the soils was in the moderately labile NaOH fraction in the surface 20 cm, and may be slowly available to the next pine rotation. Normal rates of P fertilizer will maintain elevated available P well into a second rotation in loamy Pleisteocene Ultisols of the western Gulf Coastal Plain. Exceptionally high rates were not effective at increasing potentially available P beyond normal rates.
References
[1]
Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305, doi:10.1016/j.gloenvcha.2008.10.009.
[2]
Jokela, E.J. Nutrient Management of Southern Pines. In Slash Pine: Still Growing and Growing; Dickens, E.D., Barnett, J.P., Hubbard, W.G., Jokela, E.J., Eds.; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2004; pp. 27–35. General Technical Report SRS-6.
[3]
Wells, C.G.; Crutchfield, D.M.; Berenyi, N.M.; Davey, C.B. Soil and Foliar Guidelines for Phosphorus Fertilization of Loblolly pine; Research Paper SE-110; USDA Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1973.
[4]
Allen, H.L.; Dougherty, P.M.; Campbell, R.G. Manipulation of water and nutrients—Practice and opportunity in southern U.S. pine forests. For. Ecol. Manag. 1990, 30, 437–453, doi:10.1016/0378-1127(90)90153-3.
[5]
Gregoire, N.; Fisher, R.F. Nutritional diagnoses in loblolly pine (Pinus taeda L.) established stands using three different approaches. For. Ecol. Manag. 2004, 203, 195–208, doi:10.1016/j.foreco.2004.07.049.
[6]
Albaugh, T.J.; Allen, H.L.; Fox, T.R. Historical patterns of forest fertilization in the southeastern United States from 1969 to 2004. South. J. Appl. For. 2007, 31, 129–137.
[7]
Scott, D.A.; Dean, T.J. Energy trade-offs between intensive biomass utilization, site productivity loss, and ameliorative treatments in Loblolly pine plantations. Biomass Bioenerg. 2006, 30, 1001–1010.
[8]
Scott, D.A.; Novosad, J.; Goldsmith, G. Ten-Year Results from the North American Long-Term Soil Productivity Study in the Western Gulf Coastal Plain. In Advancing the Fundamental Sciences: Proceedings of the Forest Service National Earth Sciences Conference, San Diego, CA, USA, 18–22 October 2004; Furniss, M., Clifton, C., Ronnenburg, K., Eds.; USDA Forest Service, Pacific Northwest Research Statio: Portland, OR, USA, 2007; pp. 331–340. General Technical Report PNW-689.
[9]
Turner, J.; Lambert, M.J.; Humphreys, F.R. Continuing growth response to phosphate fertilizers by a Pinus radiata plantation over fifty years. For. Sci. 2002, 48, 556–568.
[10]
Ballard, R.; Fiskell, J.G.A. Phosphorus retention in the coastal plain forest soils: I. Relationship to soil properties. Soil Sci. Soc. Am. Proc. 1974, 38, 250–255.
[11]
Ballard, R.; Pritchett, W.L. Phosphorus retention in the coastal plain forest soils: II. Significance to forest fertilization. Soil Sci. Soc. Am. Proc. 1974, 38, 363–366.
[12]
Snowdon, P. Modeling Type 1 and Type 2 growth responses in plantations after application of fertilizer or other silvicultural treatments. For. Ecol. Manag. 2002, 163, 229–244.
[13]
Comerford, N.B.; McLeod, M.; Skinner, M. Phosphorus form and bioavailability in the pine rotation following fertilization. For. Ecol. Manag. 2002, 169, 203–211.
[14]
Gentle, S.W.; Humphreys, F.R.; Lambert, M.J. Continuing response on Pinus radiata to phosphatic fertilizers over two rotations. For. Sci. 1986, 32, 822–829.
[15]
Everett, C.J.; Palm-Leis, H. Availability of residual phosphorus fertilizer for Loblolly pine. For. Ecol. Manag. 2009, 258, 2207–2213, doi:10.1016/j.foreco.2008.11.029.
[16]
Gentle, W.; Humphreys, F.R.; Lambert, M.J. An examination of a Pinus radiata phosphate fertilizer trial fifteen years after treatment. For. Sci. 1965, 11, 315–324.
[17]
Fransson, A.-M.; Bergvist, B. Phosphorus fertilisation causes durable enhancement of phosphorus concentrations in forest soil. For. Ecol. Manag. 2000, 130, 69–76.
[18]
Torbert, J.L.; Burger, J.A. Long-term availability of applied phosphorus to Loblolly pine on a Piedmont soil. Soil Sci. Soc. Am. J. 1984, 48, 1174–1178, doi:10.2136/sssaj1984.03615995004800050044x.
[19]
Pritchett, W.L.; Comerford, N.B. Long-term response to phosphorus fertilization on selected southeastern coastal plain soils. Soil Sci. Soc. Am. J. 1982, 46, 640–644, doi:10.2136/sssaj1982.03615995004600030038x.
[20]
Tiarks, A.E. Phosphorus sorption curves for evaluating phosphorus requirements of Loblolly pine (Pinus taeda). Commun. Soil Sci. Plan. 1982, 13, 619–631, doi:10.1080/00103628209367300.
[21]
Sheoran, V.; Sheoran, A.S.; Poonia, P. Soil reclamation of abandoned mine land by revegetation: A review. Int. J. Soil Sediment Water, 2010, 3, p. Article 13. Available online: http://scholarworks.umass.edu/intljssw/vol3/iss2/13/ (accessed on 29 August 2012).
[22]
Gray, C.A.; Schwab, A.P. Phosphorus-fixing ability of high pH, high calcium, coal-combustion, waste materials. Water Air Soil Poll. 1993, 69, 309–320, doi:10.1007/BF00478167.
[23]
Tiarks, A.E. Phosphorus Requirements for Establishment of Dual-Cropped Loblolly pine. In Proceedings of the Third Biennial Southern Silvicultural Research Conference, Atlanta, GA, USA, 7–8 November 1984; houlders, E., Ed.; USDA Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1985; pp. 390–394. General Technical Report SO-54.
[24]
Tiarks, A.E. Biomass production of Loblolly pine seeded between rows of planted Loblolly pine. Biomass Bioenerg. 1993, 4, 61–67, doi:10.1016/0961-9534(93)90027-2.
[25]
Kerr, A., Jr.; Griffis, B.J.; Powell, J.W.; Edwards, J.P.; Venson, R.L.; Long, J.K.; Kilpatrick, W.W. Soil Survey of Rapides Parish, Louisiana; USDA Soil Conservation Service: Washington, DC, USA, 1980.
[26]
Scott, D.A.; Tiarks, A.E. Dual-cropping Loblolly pine for biomass energy and conventional wood products. South. J. Appl. For. 2008, 32, 33–37.
[27]
Baldwin, V.C., Jr.; Feduccia, D.P. Loblolly pine Growth and Yield Prediction for Managed West Gulf Plantations; Research Paper SO-236; USDA Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1987.
[28]
Scott, D.A.; Stagg, R.H.; Smith, M.A., Jr. A Non-Destructive Method for Quantifying Small-Diameter Woody Biomass in Southern Pine Forests. In Proceedings of the 13th Biennial Southern Silvicultural Research Conference, Memphis, TN, USA, 28 February–3 March 2005; Connor, K.F., Ed.; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2006; p. 358. General Technical Report SRS-92.
[29]
Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 1962, 27, 31–36.
[30]
Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis, 2nd; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. Agronomy Monograph 9, Part 1.
[31]
Mehlich, A. Determination of P, Ca, Mg, K, Na and NH; North Carolina Soil Testing Division Mimeo: Raleigh, NC, USA, 1953.
[32]
Tiessen, H.; Moir, J.O. Characterization of Available P by Sequential Extraction. In Soil Sampling and Methods of Analysis, 2nd; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 293–306.
[33]
Fox, T.R.; Comerford, N.B.; McFee, W.W. Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 1990, 54, 1763–1767, doi:10.2136/sssaj1990.03615995005400060043x.
[34]
Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94, doi:10.2307/210739.
[35]
Conner, W.H.; Toliver, J.R.; Sklar, F.H. Natural regeneration of baldcypress (Taxodium distichum (L.) Rich.) in a Louisiana swamp. For. Ecol. Manag. 1986, 14, 305–317, doi:10.1016/0378-1127(86)90176-3.
[36]
National Climatic Data Center. Available online: http://www.ncdc.noaa.gov/oa/ncdc.html (accessed on 20 August 2012).
[37]
SAS Institute. SAS/STAT Users Guide; SAS Institute, Inc.: Cary, NC, USA, 2004; pp. 2659–2851.
[38]
Fox, T.R.; Allen, H.L.; Albaugh, T.J.; Rubilar, R.; Carlson, C.A. Tree nutrition and forest fertilization of pine plantations in the southern United States. South. J. Appl. For. 2007, 31, 5–11.
[39]
Hynynen, J.; Burkhart, H.E.; Allen, H.L. Modeling tree growth in fertilized midrotation Loblolly pine plantations. For. Ecol. Manag. 1998, 107, 213–229, doi:10.1016/S0378-1127(97)00334-4.
Shepherd, M.A.; Withers, P.J. Phosphorus leaching from liquid digested sewage sludge applied to sandy soils. J. Agr. Sci. 2001, 136, 433–441.
[42]
Turtola, E.; Yli-Halla, M. Fate of phosphorus applied in slurry and mineral fertilizer: Accumulation in soil and release into surface runoff water. Nutr. Cycl. Agroecosys. 1999, 55, 165–174, doi:10.1023/A:1009862227026.
[43]
Shoulders, E.; Tiarks, A.E. Fertilizer fate in a 13-year-old slash pine plantation. Soil Sci. Soc. Am. J. 1980, 44, 1085–1089, doi:10.2136/sssaj1980.03615995004400050042x.
[44]
Djodjic, F.; B?rling, K.; Bergstr?m, L. Phosphorus leaching in relation to soil type and soil phosphorus content. J. Environ. Qual. 2004, 33, 678–684, doi:10.2134/jeq2004.0678.
[45]
Fraser, A.I.; Harrod, T.R.; Haygarth, P.M. The effect of rainfall intensity on soil erosion and particulate phosphorus transfer from arable soils. Water Sci. Technol. 1999, 39, 41–45.
[46]
Nash, D.L.; Clemow, L.; Hannah, M.; Barlow, K.; Gangaiya, P. Modelling phosphorus exports from rain-fed and irrigated pastures in southern Australia. Aust. J. Soil Res. 2005, 43, 745–755, doi:10.1071/SR04119.
[47]
Preedy, N.; McTiernan, K.; Matthews, R.; Heathwaite, L.; Haygarth, P. Rapid incidental phosphorus transfers from grassland. J. Environ. Qual. 2001, 30, 2105–2112, doi:10.2134/jeq2001.2105.
[48]
Haygarth, P.M.; Jarvis, S.C. Transfer of phosphorus from agricultural soils. Adv. Agron. 1999, 66, 195–249, doi:10.1016/S0065-2113(08)60428-9.
[49]
Withers, P.J.A.; Ulen, B.; Stamm, C.; Bechmann, M. Incidental phosphorus losses—Are they significant and can they be predicted? J. Plant Nutr. Soil Sci. 2003, 166, 459–468, doi:10.1002/jpln.200321165.
[50]
Hart, M.R.; Quin, B.F.; Nguyen, M.L. Phosphorus runoff from agricultural land and direct fertilizer effects: A review. J. Environ. Qual. 2004, 33, 1954–1972, doi:10.2134/jeq2004.1954.
[51]
Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2004, 237, 287–307.
[52]
Kleinman, P.J.A.; Sharpley, A.N.; Moyer, B.G.; Elwinger, G.F. Effect of mineral and manure phosphorus sources on runoff phosphorus. J. Environ. Qual. 2002, 31, 2026–2033.
[53]
Fox, T.R.; Comerford, N.B. Rhizosphere phosphatase activity and phosphatase hydrolyzable organic phosphorus in two forested spodosols. Soil Biol. Biochem. 1992, 24, 579–583, doi:10.1016/0038-0717(92)90083-A.
[54]
Richter, D.D.; Allen, H.L.; Li, J.; Markewitz, D.; Raikes, J. Bioavailability of slowly cycling soil phosphorus: Major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 2006, 150, 259–271, doi:10.1007/s00442-006-0510-4.
[55]
Polglase, P.J.; Jokela, E.J.; Comerford, N.B. Nitrogen and phosphorus release from decomposing needles of southern pine plantations. Soil Sci. Soc. Am. J. 1992, 56, 914–920, doi:10.2136/sssaj1992.03615995005600030039x.
McDowell, R.W.; Monaghan, R.M.; Carey, P.L. Potential phosphorus losses in overland flow from pastoral soils receiving long-term applications of either superphosphate or reactive phosphate rock. New Zeal. J. Agr. Res. 2003, 46, 329–337, doi:10.1080/00288233.2003.9513561.
[58]
Haywood, J.D.; Tiarks, A.E.; Snow, G.A. Combinations of fungicide and cultural practices influence the incidence and impact of fusiform rust in slash pine plantations. South. J. Appl. For. 1994, 18, 53–59.