全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2012 

Fire Effects on Soils in Lake States Forests: A Compilation of Published Research to Facilitate Long-Term Investigations

DOI: 10.3390/f3041034

Keywords: Lake States, fire effects, soil, forest, Michigan, Minnesota, Wisconsin, New York, Ontario, Manitoba

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fire-adapted forests of the Lake States region are poorly studied relative to those of the western and southeastern United States and our knowledge base of regional short- and long-term fire effects on soils is limited. We compiled and assessed the body of literature addressing fire effects on soils in Lake States forests to facilitate the re-measurement of previous studies for the development of new long-term datasets, and to identify existing gaps in the regional knowledge of fire effects on forest soils. Most studies reviewed addressed fire effects on chemical properties in pine-dominated forests, and long-term (>10 years) studies were limited. The major gaps in knowledge we identified include: (1) information on fire temperature and behavior information that would enhance interpretation of fire effects; (2) underrepresentation of the variety of forest types in the Lake States region; (3) information on nutrient fluxes and ecosystem processes; and (4) fire effects on soil organisms. Resolving these knowledge gaps via future research will provide for a more comprehensive understanding of fire effects in Lake States forest soils. Advancing the understanding of fire effects on soil processes and patterns in Lake States forests is critical for designing regionally appropriate long-term forest planning and management activities.

References

[1]  Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland fire in ecosystems: Effects of fire on soils and water. In General Technical Report RMRS-GTR-42-Vol.4; USDA Forest Service: Ogden, UT, USA, 2005.
[2]  Joint Fire Science Program. Available online: http://www.firescience.gov/ (accessed on 30 April 2012).
[3]  Frelich, L.E. Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests; Cambridge University Press: Cambridge, UK, 2002.
[4]  White, M.A.; Host, G.E. Forest disturbance frequency and patch structure from pre-European settlement to present in the Mixed Forest Province of Minnesota, USA. Can. J. For. Res. 2008, 38, 2212–2226, doi:10.1139/X08-065.
[5]  Rothstein, D.E.; Yermakov, Z.; Buell, A.L. Loss and recovery of ecosystem carbon pools following stand-replacing wildfire in Michigan jack pine forests. Can. J. For. Res. 2004, 34, 1908–1918, doi:10.1139/x04-063.
[6]  Cleland, D.T.; Crow, T.R.; Saunders, S.C.; Dickmann, D.I.; Maclean, A.L.; Jordan, J.K.; Watson, R.L.; Sloan, A.M.; Brosofske, K.D. Characterizing historical and modern fire regimes in Michigan (USA): A landscape ecosystem approach. Landscape Ecol. 2004, 19, 311–325, doi:10.1023/B:LAND.0000030437.29258.3c.
[7]  Drobyshev, I.; Goebel, P.C.; Hix, D.M.; Corace, R.G., III; Semko-Duncan, M.E. Pre- and post-European settlement fire history of red pine dominated forest ecosystems of Seney National Wildlife Refuge, Upper Michigan. Can. J. For. Res. 2008, 38, 2497–2514, doi:10.1139/X08-082.
[8]  Shifley, S.R.; Aguilar, F.X.; Song, N.; Stewart, S.I.; Nowak, D.J.; Gormanson, D.D.; Moser, W.K.; Wormstead, S.; Greenfield, E.J. Forests of the Northern United States; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2012.
[9]  Schulte, L.A.; Mladenoff, D.J.; Burrows, S.N.; Sickley, T.A.; Nordheim, E.V. Spatial controls of Pre-Euro-American wind and fire disturbance in Northern Wisconsin (USA) forest landscapes. Ecosystems 2005, 8, 73–94, doi:10.1007/s10021-004-0052-8.
[10]  Drobyshev, I.; Goebel, P.C.; Bergeron, Y.; Corace, R.G., III. Detecting changes in climate forcing on fire regime in a North American mixed pine forests: A case study of Seney National Wildlife Refuge, Upper Michigan. Dendrochronologia 2012, 30, 137–145, doi:10.1016/j.dendro.2011.07.002.
[11]  Maissurow, D.K. The role of fire in the perpetuation of virgin forests in northwestern Wisconsin. J. Forest. 1941, 39, 201–207.
[12]  Curtis, J.T. The Vegetation of Wisconsin—An Ordination of Plant Communities; The University of Wisconsin Press: Madison, WI, USA, 1959.
[13]  Pyne, S.J. Fire in America: A Cultural History of Wildland and Rural Fire; Princeton University Press: Princeton, NJ, USA, 1982.
[14]  Dorney, C.H.; Dorney, J.R. An unusual oak savanna in northeastern Wisconsin: The effect of Indian-caused fire. Am. Midl. Nat. 1989, 122, 101–113.
[15]  Cardille, J.A.; Ventura, S.J. Occurrence of wildfire in the northern Great Lakes Region: Effects of land cover and land ownership assessed at multiple scales. Int. J. Wildl. Fire 2001, 10, 145–154.
[16]  Frelich, L.E. Old forest in the Lake States today and before European settlement. Nat. Areas J. 1995, 15, 157–167.
[17]  Rhemtulla, J.M.; Mladenoff, D.J.; Clayton, M.K. Legacies of historical land use on regional forest composition and structure in Wisconsin, USA (mid-1800s–1930s–2000s). Ecol. Appl. 2009, 19, 1061–1078.
[18]  Sands, B.A.; Abrams, M.D. A 183-year history of fire and recent fire suppression impacts in select pine and oak forest stands of the Menominee Indian reservation, Wisconsin. Am. Midl. Nat. 2011, 166, 325–338, doi:10.1674/0003-0031-166.2.325.
[19]  Stoltman, A.M.; Radeloff, V.C.; Mladenoff, D.J. Computer visualization of pre-settlement and current forests in Wisconsin. For. Ecol. Manag. 2007, 246, 135–143.
[20]  Frelich, L.E.; Reich, P.B. Wilderness conservation in an Era of global warming and invasive species: A case study from Minnesota’s boundary waters canoe area wilderness. Nat. Areas J. 2009, 29, 385–393, doi:10.3375/043.029.0405.
[21]  Corace, R.G., III; Goebel, P.C.; Hix, D.M.; Casselman, T.; Seefelt, N.E. Ecological forestry at National Wildlife Refuges: Experiences from Seney National Wildlife Refuge and Kirtland’s Warbler Wildlife Management Area, USA. For. Chron. 2009, 85, 695–701.
[22]  Dickmann, D.I. Management of red pine for multiple benefits using prescribed fire. North. J. Appl. For. 1993, 10, 53–62.
[23]  McRae, D.J.; Lynham, T.J.; Frech, R.J. Understory prescribed burning in red pine and white-pine. For. Chron. 1994, 70, 395–401.
[24]  Ek, A.R.; Katovich, S.A.; Kilgore, M.A.; Palik, B.J. Red Pine Management Guide; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2006.
[25]  Rein, G.; Cleaver, N.; Ashton, C.; Pironi, P.; Torero, J.L. The severity of smouldering peat fires and damage to the forest soil. Catena 2008, 74, 304–309.
[26]  Weber, M.G. Forest soil respiration in eastern Ontario jack pine ecosystems. Can. J. For. Res. 1985, 15, 1069–1073, doi:10.1139/x85-174.
[27]  Weber, M.G. Decomposition, litter fall, and forest floor nutrient dynamics in relation to fire in eastern Ontario jack pine ecosystems. Can. J. For. Res. 1987, 17, 1496–1506, doi:10.1139/x87-232.
[28]  Frederick, D.J.; Rakestraw, L.; Eder, C.R.; van Dyke, R.A. Original forest vegetation of the Pictured Rocks National Lakeshore and a comparison with present conditions. Mich. Academ. 1977, 9, 433–443.
[29]  Barrett, L.R. Podzolization under forest and stump prairie vegetation in northern Michigan. Geoderma 1997, 78, 37–58.
[30]  Crow, T.R. Reproductive mode and mechanisms for self-replacement of northern red oak (Quercusrubra)—A review. For. Sci. 1988, 34, 19–40.
[31]  Lytle, D.E. Palaeoecological evidence of state shifts between forest and barrens on a Michigan sand plain, USA. Holocene 2005, 15, 821–836.
[32]  Paré, D.; Bergeron, Y. Effect of colonizing tree species on soil nutrient availability in a clay soil of the boreal mixedwood. Can. J. For. Res. 1996, 26, 1022–1031, doi:10.1139/x26-113.
[33]  Peterson, D.W.; Reich, P.B. Prescribed fire in oak savanna: Fire frequency effects on stand structure and dynamics. Ecol. Appl. 2001, 11, 914–927.
[34]  Lindenmayer, D.B.; Hobbs, R.J.; Likens, G.E.; Krebs, C.J.; Banks, S.C. Newly discovered landscape traps produce regime shifts in wet forests. P. Nat. Acad. Sci. USA 2011, 108, 15887–15891.
[35]  Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 2011, 21, 1189–1201.
[36]  Boerner, R.E.J.; Huang, J.J.; Hart, S.C. Fire, thinning, and the carbon economy: Effects of fire and fire surrogate treatments on estimated carbon storage and sequestration rate. For. Ecol. Manag. 2008, 255, 3081–3097, doi:10.1016/j.foreco.2007.11.021.
[37]  Boerner, R.E.J.; Huang, J.; Hart, S.C. Impacts of fire and fire surrogate treatments on ecosystem nitrogen storage patterns: Similarities and differences between forests of eastern and western North America. Can. J. For. Res. 2008, 38, 3056–3070.
[38]  Clinton, B.D.; Vose, J.M.; Cohen, E.C. Geographic considerations for fire management: Geomorphology, topography, soils, and climate of the Eastern U.S. DRAFT Cumulative Watershed Effects of Fuels Management in the Eastern United States; USDA Forest Service, Northeastern Area S&PF, Fire and Aviation Management: Newtown Square, PA, USA, 2008. Available online: http://www.na.fs.fed.us/fire/cwe.shtm (accessed on 30 April 2012). Chapter 3.
[39]  Knapp, E.E.; Estes, B.L.; Skinner, C.N. Ecological Effects of Prescribed Fire Season: A Literature Review and Synthesis for Managers; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2009.
[40]  Bedison, J.E.; Johnson, A.H.; Willig, S.A. A comparison of soil organic matter content in 1932, 1984, and 2005/6 in forests of the Adirondack Mountains, New York. Soil Sci. Soc. Am. J. 2010, 74, 658–662, doi:10.2136/sssaj2009.0132N.
[41]  Potter, K.M.; Conkling, B.L. DRAFT Forest Health Monitoring 2011 National Technical Report; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2012.
[42]  Anderson, S.H. Effects of the 1976 Seney National Wildlife Refuge Wildfire on Wildlife and Wildlife Habitat; US Department of Interior, Fish and Wildlife Service: Washington, DC, USA, 1982.
[43]  Alban, D.H. Influence on soil properties of prescribed burning under mature red pine. In USDA Forest Service Research Paper NC-139; North Central Forest Experiment Station: St. Paul, MN, USA, 1977.
[44]  Ahlgren, C.E. Some Effects of Prescribed Burning on Jack Pine Reproduction in Northeastern Minnesota; Miscellaneous Report; University of Minnesota Agricultural Experiment Station: St. Paul, MN, USA, 1970.
[45]  Noble, M.G.; DeBoer, L.K.; Johnson, K.L.; Coffin, B.A.; Fellows, L.G.; Christensen, N.A. Quantitative relationships among some Pinusbanksiana—Piceamariana forests subjected to wildfire and postlogging treatments. Can. J. For. Res. 1977, 7, 368–377, doi:10.1139/x77-046.
[46]  Rothstein, D.E.; Spaulding, S.E. Replacement of wildfire by whole-tree harvesting in jack pine forests: Effects on soil fertility and tree nutrition. For. Ecol. Manag. 2010, 260, 1164–1174, doi:10.1016/j.foreco.2010.07.007.
[47]  Severson, R.C.; Grigal, D.F.; Arneman, H.F. Percolation losses of phosphorus, calcium, and potassium from some Minnesota forest soils. Soil Sci. Soc. Am. J. 1975, 39, 540–543, doi:10.2136/sssaj1975.03615995003900030043x.
[48]  Smith, D.W. Concentrations of soil nutrients before and after fire. Can. J. Soil Sci. 1970, 50, 17–29.
[49]  Staddon, W.J.; Duchesne, L.C.; Trevors, J.T. Acid phosphatase, alkaline phosphatase and arylsulfatase activities in soils from a jack pine (Pinus banksiana Lamb.) ecosystem after clear-cutting, prescribed burning, and scarification. Biol. Fert. Soils 1998, 27, 1–4, doi:10.1007/s003740050390.
[50]  Zeleznik, J.D.; Dickmann, D.I. Effects of high temperatures on fine roots of mature red pine (Pinus resinosa) trees. For. Ecol. Manag. 2004, 199, 395–409, doi:10.1016/j.foreco.2004.05.050.
[51]  Ahlgren, C.E. Buried Seed in Prescribe-Burned Jack Pine Forest Soils, Northeastern Minnesota; School of Forestry, University of Minnesota: St. Paul, MN, USA, 1979.
[52]  Ahlgren, C.E. Seventeen-year changes in climatic elements following prescribed burning. For. Sci. 1981, 27, 33–39.
[53]  Beaudry, S.; Duchesne, L.C.; Cote, B. Short-term effects of three forestry practices on carabid assemblages in a jack pine forest. Can. J. For. Res. 1997, 27, 2065–2071.
[54]  Duchesne, L.C.; Wetzel, S. Effect of clear-cutting, prescribed burning and scarification on litter decomposition in an eastern Ontario jack pine (Pinus banksiana) ecosystem. Int. J. Wildl. Fire 1999, 9, 195–201, doi:10.1071/WF00016.
[55]  Fraver, S.; Jain, T.; Bradford, J.B.; D’Amato, A.W.; Kastendick, D.; Palik, B.; Shinneman, D.; Stanovick, J. The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, USA. Ecol. Appl. 2011, 21, 1895–1901, doi:10.1890/11-0380.1.
[56]  Herr, D.G.; Duchesne, L.C.; Tellier, R.; McAlpine, R.S.; Peterson, R.L. Effect of prescribed burning on the ectomycorrhizal infectivity of a forest soil. Int. J. Wild. Fire 1994, 4, 95–102, doi:10.1071/WF9940095.
[57]  Lynham, T.J.; Wickware, G.M.; Mason, J.A. Soil chemical changes and plant succession following experimental burning in immature jack pine. Can. J. Soil Sci. 1998, 78, 93–104.
[58]  Ahlgren, I.F.; Ahlgren, C.E. Effects of prescribed burning on soil microorganisms in a Minnesota Jack Pine forest. Ecology 1965, 46, 304–310, doi:10.2307/1936333.
[59]  Schaetzl, R.J. Changes in O horizon mass, thickness and carbon content following fire in northern hardwood forests. Vegetatio 1994, 115, 41–50.
[60]  Bradford, J.B.; Fraver, S.; Milo, A.M.; D’Amato, A.W.; Palik, B.; Shinneman, D.J. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. For. Ecol. Manag. 2012, 267, 209–214, doi:10.1016/j.foreco.2011.12.010.
[61]  Buckman, R.E. Effects of prescribed burning on Hazel in Minnesota. Ecology 1964, 45, 626–629, doi:10.2307/1936114.
[62]  Duchesne, L.C.; Weber, M.G. High-incidence of the edible morel Morchellaconicain a jack pine, Pinus banksiana, forest following prescribed burning. Can. Field Nat. 1993, 107, 114–116.
[63]  Smith, D.R.; Kaduk, J.D.; Balzter, H.; Wooster, M.J.; Mottram, G.N.; Hartley, G.; Lynham, T.J.; Studens, J.; Curry, J.; Stocks, B.J. Soil surface CO2 flux increases with successional time in a fire scar chronosequence of Canadian boreal jack pine forest. Biogeosci. 2010, 7, 1375–1381, doi:10.5194/bg-7-1375-2010.
[64]  Staddon, W.J.; Duchesne, L.C.; Trevors, J.T. Impact of clear-cutting and prescribed burning on microbial diversity and community structure in a Jack pine (Pinus banksiana Lamb) clear-cut using Biolog Gram-negative microplates. World J. Microbiol. Biot. 1998, 14, 119–123.
[65]  Staddon, W.J.; Duchesne, L.C.; Trevors, J.T. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns. Microb. Ecol. 1997, 34, 125–130.
[66]  Yermakov, Z.; Rothstein, D.E. Changes in soil carbon and nitrogen cycling along a 72-year wildfire chronosequence in Michigan jack pine forests. Oecologia 2006, 149, 690–700, doi:10.1007/s00442-006-0474-4.
[67]  LeDuc, S.D.; Rothstein, D.E. Plant-available organic and mineral nitrogen shift in dominance with forest stand age. Ecology 2010, 91, 708–720.
[68]  Leduc, S.D.; Rothstein, D.E. Initial recovery of soil carbon and nitrogen pools and dynamics following disturbance in jack pine forests: A comparison of wildfire and clearcut harvesting. Soil Biol. Biochem. 2007, 39, 2865–2876, doi:10.1016/j.soilbio.2007.05.029.
[69]  Stocks, B.J. Fire behaviour in immature jack pine. Can. J. For. Res. 1987, 17, 80–86.
[70]  Van Wagner, C.E. Duff consumption by fire in eastern Pine stands. Can. J. For. Res. 1972, 2, 34–39, doi:10.1139/x72-006.
[71]  Ahlgren, C.E. Some effects of fire on forest reproduction in northeastern Minnesota. J. For. 1959, 57, 194–200.
[72]  Johnston, M.; Elliott, J. The effect of fire severity on ash, and plant and soil nutrient levels following experimental burning in a boreal mixedwood stand. Can. J. Soil Sci. 1998, 78, 35–44, doi:10.4141/S97-024.
[73]  Kemball, K.J.; Wang, G.G.; Westwood, A.R. Are mineral soils exposed by severe wildfire better seedbeds for conifer regeneration? Can. J. For. Res. 2006, 36, 1943–1950, doi:10.1139/x06-073.
[74]  Reeder, C.J.; Jurgensen, M.F. Fire-induced water repellency in forest soils of upper Michigan. Can. J. For. Res. 1979, 9, 369–373.
[75]  Wicklow, D.T.; Whittingham, W.F. Comparison of soil microfungal populations in disturbed and undisturbed forests in northern Wisconsin. Can. J. Bot. 1978, 56, 1702–1709.
[76]  Woodruff, L.G.; Cannon, W.F. Immediate and long-term fire effects on total mercury in forests soils of Northeastern Minnesota. Environ. Sci. Tech. 2010, 44, 5371–5376, doi:10.1021/es100544d.
[77]  Wright, R.F. Impact of forest fire on nutrient influxes to small lakes in northeastern Minnesota. Ecology 1976, 57, 649–663, doi:10.2307/1936180.
[78]  Grigal, D.F.; McColl, J.G. Litter decomposition following forest fire in northeastern Minnesota. J. Appl. Ecol. 1977, 14, 531–538.
[79]  McColl, J.G.; Grigal, D.F. Nutrient changes following a forest wildfire in Minnesota—Effects in watersheds with differing soils. Oikos 1977, 28, 105–112, doi:10.2307/3543329.
[80]  McColl, J.G.; Grigal, D.F. Forest fire—Effects on phosphorus movement to lakes. Science 1975, 188, 1109–1111.
[81]  Ohmann, L.F.; Grigal, D.F. Early Revegetation and Nutrient Dynamics following the 1971 Little Sioux Forest Fire in Northeastern Minnesota; ociety of American Foresters: Washington, DC, USA, 1979.
[82]  Reich, P.B.; Bakken, P.; Carlson, D.; Frelich, L.E.; Friedman, S.K.; Grigal, D.F. Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests. Ecology 2001, 82, 2731–2748, doi:10.1890/0012-9658(2001)082[2731:IOLFAF]2.0.CO;2.
[83]  Slaughter, K.W.; Grigal, D.F.; Ohmann, L.F. Carbon storage in southern boreal forests following fire. Scand. J. For. Res. 1998, 13, 119–127.
[84]  Wicklow, D.T.; Whittingham, W.F. Soil microfungal changes among profiles of disturbed conifer-hardwood forests. Ecology 1974, 55, 3–16.
[85]  Adams, P.W.; Boyle, J.R. Soil fertility changes following clear-cut and whole-tree harvesting and burning in central Michigan. Soil Sci. Soc. Am. J. 1982, 46, 638–640, doi:10.2136/sssaj1982.03615995004600030037x.
[86]  Adams, P.W.; Boyle, J.R. Effects of fire on soil nutrients in clear-cut and whole-tree harvest sites in central Michigan. Soil Sci. Soc. Am. J. 1980, 44, 847–850.
[87]  Dickie, I.A.; Dentinger, B.T.M.; Avis, P.G.; McLaughlin, D.J.; Reich, P.B. Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. Mycologia 2009, 101, 473–483.
[88]  Dijkstra, F.A.; Wrage, K.; Hobbie, S.E.; Reich, P.B. Tree patches show greater N losses but maintain higher soil N availability than grassland patches in a frequently burned oak savanna. Ecosystems 2006, 9, 441–452, doi:10.1007/s10021-006-0004-6.
[89]  Gough, C.M.; Vogel, C.S.; Harrold, K.H.; George, K.; Curtis, P.S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob. Change Biol. 2007, 13, 1935–1949.
[90]  Hernandez, D.L.; Hobbie, S.E. Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia 2008, 158, 535–543, doi:10.1007/s00442-008-1162-3.
[91]  Kay, A.D.; Mankowski, J.; Hobbie, S.E. Long-term burning interacts with herbivory to slow decomposition. Ecology 2008, 89, 1188–1194, doi:10.1890/07-1622.1.
[92]  Knighton, M.D. Hydrologic response and nutrient concentrations following spring burns in an oak-hickory forest. Soil Sci. Soc. Am. J. 1977, 41, 627–632.
[93]  Kruger, E.L.; Reich, P.B. Responses of hardwood regeneration to fire in mesic forest openings. II. Leaf gas exchange, nitrogen concentration, and water status. Can. J. For. Res. 1997, 27, 1832–1840, doi:10.1139/x97-137.
[94]  Norris, M.D.; Reich, P.B. Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant Soil 2009, 316, 193–204.
[95]  Reich, P.B.; Peterson, D.W.; Wedin, D.A.; Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 2001, 82, 1703–1719.
[96]  Smith, D.W.; James, T.D. Characteristics of prescribed burns and resultant short-term environmental changes in Populus-tremuloides woodlands in southern Ontario. Can. J. Bot. 1978, 56, 1782–1791.
[97]  Tang, J.W.; Bolstad, P.V.; Martin, J.G. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Glob. Change Biol. 2009, 15, 145–155, doi:10.1111/j.1365-2486.2008.01741.x.
[98]  Tester, J.R. Effects of fire frequency on oak savanna in east-central Minnesota. Bull. Torr. Bot. Club 1989, 116, 134–144.
[99]  White, L.L.; Zak, D.R.; Barnes, B.V. Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidentata chronosequence. For. Ecol. Manag. 2004, 191, 121–127, doi:10.1016/j.foreco.2003.11.010.
[100]  Mitchell, C.P.J.; Kolka, R.K.; Fraver, S. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools. Environ. Sci. Technol. 2012, 46, 7963–7970, doi:10.1021/es300133h.
[101]  Boerner, R.E.J.; Huang, J.J.; Hart, S.C. Impacts of Fire and Fire Surrogate treatments on forest soil properties: A meta-analytical approach. Ecol. Appl. 2009, 19, 338–358.
[102]  Groeschl, D.A.; Johnson, J.E.; Smith, D.W. Forest soil characteristics following wildfire in the Shenandoah National Park, Virginia. In Fire and Environment: Ecological and Cultural Perspectives: Proceedings of an International Symposium. Gen Tech. Rep. SE-69; Nodvin, S.C., Waldrop, T.A., Eds.; U.S. Department of Agriculture, Forest Service, Southeastern Forest Research Station: Asheville, NC, USA, 1990; pp. 129–137.
[103]  Ahlgren, I.F.; Ahlgren, C.E. Ecological effects of forest fires. Bot. Rev. 1960, 26, 483–535.
[104]  Nowacki, G.J.; Abrams, M.D. The demise of fire and “Mesophication” of forests in the Eastern United States. Bioscience 2008, 58, 123–138, doi:10.1641/B580207.
[105]  Jain, T.B.; Graham, R.T. The relation between tree burn severity and forest structure in the Rocky Mountains. In Proceedings of the 2005 National Silviculture Workshop, Tahoe City, CA, USA, 6–10 June 2005.
[106]  Landfire, Available online: http://www.landfire.gov/ (accessed on 29 April 2012).
[107]  FCCS. Fuel Characteristics Classification System. Available online: http://www.fs.fed.us/pnw/fera/fccs/index.shtml (accessed on 29 April 2012).
[108]  Monitoring Trends in Burn Severity. Available online: http://www.mtbs.gov/ (accessed on 29 April 2012).
[109]  Kashian, D.M.; Corace, R.G.I.; Shartell, L.M.; Donner, D.M.; Huber, P.W. Variability and persistence of post-fire biological legacies in jack pine-dominated ecosystems of northern Lower Michigan. For. Ecol. Manag. 2012, 263, 148–158, doi:10.1016/j.foreco.2011.09.019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133