We investigated the sprouting capacity of poplar stumps in ten 8–21-year old stands growing on former farmland in Sweden situated between 55°N and 60°N. Seven of the stands were planted with the clone OP-42 ( Populus maximowiczii Henry × Populus trichocarpa Torr. and Gray), one with black cottonwood ( Populus trichocarpa Torr. and Gray) and two with unidentified clones. The poplars’ mean age was 17 years (range 8–21); six of the stands were growing on clay soils, two on tills and two on loam. The studied sprouts were 1–7 years old. Stump sprouting was observed in all studied stands. The number of sprouts per living stump decreased as sprout age increased. The mean dry mass of all sprouts stump ?1 was 16.1 ± 14.0 (range 3.3–37.2) kg. A biomass equation was constructed for estimating sprout biomass from the sprouts’ diameter at 10 cm above the ground (D 10). The mean total sprout weight per hectare for sprouts amounted to 16.9 ± 14.6 (range 1.2–41.3) tons ha ?1 when calculated for the actual living stumps in the studied areas.
References
[1]
Johansson, T.; Hjelm, B. Stump and root biomass of poplar. Forests 2012, 3, 166–178, doi:10.3390/f3020166.
[2]
Peterson, E.B.; Peterson, N.M.; McLennan, D.S. Black Cottonwood and Balsam Poplar; Managers Handbook for British Colombia: FRDA Report 250; BC Ministry of Forests: Victoria, Canada, 1966.
[3]
Laureysens, I.; Bogaert, J.; Blust, R.; Ceulemans, R. Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. For. Ecol. Manage. 2004, 187, 295–309, doi:10.1016/j.foreco.2003.07.005.
[4]
Stanturf, J.A.; van Oosten, C.; Netzer, D.A.; Coleman, M.D.; Portwood, C.J. Ecology and Silviculture of Poplar Plantations. In Poplar Culture in North America; Dickmann, D.I., Isebrands, J.G., Eckerwalder, J.E., Richardson, J., Eds.; NRC Research Press: Ottawa, Canada, 2001; pp. 153–206.
[5]
Lust, N.; Mohammady, M. Regeneration of Coppice. Sylva Gardavensis 1973, 39, 1–28.
[6]
Kramer, P.J.; Kozlowski, T.T. Physiology of Woody Plants, 2nd ed.; Academic Press: New York, NY, USA, 1979.
[7]
Johansson, T. Seasonal changes in contents of root starch and soluble charbohydrates in 4-6-year old Betula pubescens and Populus tremula. Scand. J. For. Res. 1993, 8, 94–106, doi:10.1080/02827589309382758.
[8]
DeBell, D.S.; Alford, L.T. Sprouting characteristics and cutting practices evaluated for cottonwood. Tree Planter’s Notes 1992, 4, 1–5.
[9]
Strong, T.; Zavitkovski, J. Effect of Harvesting Season on Hybrid Poplar Coppicing. In Intensive Plantation Culture: 12 Years Research; General Technical Report, NC-91; Hansen, E.A., Ed.; United State Department of Agriculture, Forest Service Northern Central Forest Experimental Station: Saint Paul, MN, USA, 1983; pp. 54–57.
[10]
Crist, J.A.; Mattson, J.A.; Winsauer, S.A. Effect of Severing Method and Stump Height on Coppice Growth. In Intensive Plantation Culture: 12 Years Research; General Technical Report, NC-91; Hansen, E.A., Ed.; United State Department of Agriculture, Forest Service Northern Central Forest Experimental Station: Saint Paul, MN, USA, 1983; pp. 58–63.
[11]
Lee, D.K.; Gordon, F.C.; Promnits, L.C. Three-year growth and yield of Populus hybrids grown under intensive culture. Biomass 1987, 13, 117–124, doi:10.1016/0144-4565(87)90031-X.
[12]
Bergez, J.E.; Auclair, D.; Bouvarel, L. First-year growth of hybrid poplar shoots from cutting or coppice origin. For. Sci. 1989, 35, 1105–1113.
[13]
Auclair, D. Coppice versus Single-stem Physiology, Growth, Economics. In Station de Sylviculture; Institut National de la Recherche Agronomique: Paris, France, 1985.
[14]
Blake, T.J.; Raitanen, W.E. A Summary of Factors Influencing Coppicing; International Energy Agency: Stockholm, Sweden, 1981. Report 22.
[15]
Johansson, T. Dormant buds on Betula pubescens and Betula pendula stumps under different field conditions. For. Ecol. Manage. 1992, 47, 245–259, doi:10.1016/0378-1127(92)90277-G.
[16]
Johansson, T. Sprouting of 2- to 5-year-old birches (Betula pubescens Ehrh. and Betula pendula Roth) in relation to stump height and felling time. For. Ecol. Manage. 1992, 53, 263–281, doi:10.1016/0378-1127(92)90046-C.
[17]
Dryck, N.; Strobl, S. Type and timing of thinning hybrid poplar coppice affects growth. North. J. Appl. For. 1991, 8, 166–168.
[18]
Johansson, T.; Kara?i?, A. Increment and biomass in hybrid poplar and some Practical implications. Biomass Bioenergy 2011, 35, 1925–1934, doi:10.1016/j.biombioe.2011.01.040.
[19]
Andersson, E.; Tuimala, A. Definitioner, mm, vid vedunders?kningar. (Definitions for Wood technology); The Nordic Joint Group in Wood Technology Research Note No. 4; Joint Nordic Group for Wood Technology and Producers: ?s, Norway, 1980; pp. 53–66.
[20]
Kittredge, J. Estimation of the amount of foliage of trees and stands. J. For. 1944, 42, 905–912.
[21]
Payandeh, B. Choosing regression models for biomass prediction models. For. Chron. 1981, 57, 229–232.
[22]
Satoo, T.; Madgewick, H.A.I. Forest Biomass; Martinus Nijhoff/DR W. Junk. Publishers: London, UK, 1985; p. 23.
[23]
Bolstad, P.V.; Gower, S.T. Estimation of leaf area index in fourteen southern Wisconsin forests stands using a portable radiometer. Tree Physiol. 1990, 7, 115–124, doi:10.1093/treephys/7.1-2-3-4.115. 14972910
[24]
Johansson, T. Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenergy 1999, 16, 223–238, doi:10.1016/S0961-9534(98)00075-0.
[25]
SAS, Version 9.1, SAS Institute Inc. Cary, NC, USA, 2006.
[26]
Zar, J.H. Biostatistical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999.
[27]
Herve, C.; Ceulemans, R. Short-rotation coppiced vs. non-coppiced poplar: A comparative study at two different field sites. Biomass Bioenergy 1996, 11, 139–150, doi:10.1016/0961-9534(96)00028-1.
[28]
Kauppi, A.; Rinne, P.; Ferm, A. Sprouting ability and significance for coppicing of dormant buds on Betula pubescens Ehrh. Stumps. Scand. J. For. Res. 1988, 3, 343–354, doi:10.1080/02827588809382522.
[29]
Laureysens, I.; Deraedt, W.; Indeherberge, T.; Ceulemans, R. Population dynamics in a 6-year old coppice culture of poplar. I. Clonal differences in stool mortality, shoot dynamics and shoot diameter distribution in relation to biomass production. Biomass Bioenergy 2003, 24, 81–95, doi:10.1016/S0961-9534(02)00105-8.
[30]
Benetka, V.; Bartáková, I.; Mottl, J. Productivity of Populus nigra L. ssp. nigra under short-rotation culture in marginal areas. Biomass Bioenergy 2002, 23, 327–336, doi:10.1016/S0961-9534(02)00065-X.
[31]
Benetka, V.; Vrátny, F.; ?álková, I. Comparison of the productivity of Populus nigra L. with an interspecific hybrid in a short rotation coppice in marginal areas. Biomass Bioenergy 2007, 31, 367–374, doi:10.1016/j.biombioe.2007.01.005.
[32]
Pellis, A.; Laureysons, I.; Ceulemans, R. Growth and production of short-rotation coppice culture of poplar. I. Clonal differences in leaf characteristics in relation to biomass production. Biomass Bioenergy 2004, 27, 9–19, doi:10.1016/j.biombioe.2003.11.001.
[33]
Heilman, P.; Peabody, D.V., Jr. Effect of harvest cycle and spacing on productivity of black cottonwood in intensive culture. Can. J. For. Res. 1981, 11, 118–123, doi:10.1139/x81-016.
[34]
Proe, M.F.; Griffiths, J.H.; Craig, J. Effects of spacing, species and coppicing on leaf area, light interception and photosynthesis in short rotation forestry. Biomass Bioenergy 2002, 23, 315–326, doi:10.1016/S0961-9534(02)00060-0.
[35]
Al Afas, N.; Marron, N.; van Dongen, S.; Laureysens, I.; Ceulemans, R. Dynamics of biomass production in a coppice culture over three rotations (11 Years). For. Ecol. Manage. 2008, 255, 1883–1891, doi:10.1016/j.foreco.2007.12.010.
[36]
Davidson, W.H. Hybrid poplar sproutclumps: Thinning does not improve development. J. For. 1963, 81, 662–663.
[37]
Auclair, D.; Bouvarel, L. Intensive or extensive cultivation of short rotation hybrid poplar coppice on forest land. Biores. Techn. 1992, 42, 53–59, doi:10.1016/0960-8524(92)90087-E.
[38]
Hansen, E.A. Poplar woody biomass yields: A look to the future. Biomass Bioenergy 1991, 1, 1–7, doi:10.1016/0961-9534(91)90046-F.
[39]
Dickmann, D.I.; Stuart, K.W. The Culture of Poplars in Eastern North America; Michigan State University Publications: East Lansing, MI, USA, 1983.
[40]
Mitchell, C.P. Ecophysiology of short rotation forest crops. Biomass Bioenergy 1992, 2, 25–38, doi:10.1016/0961-9534(92)90085-5.
[41]
Laureysens, I.; Pellis, A.; Willems, J.; Ceulemans, R. Growth and production of a short rotation coppice culture of poplar: III. Second rotation results. Biomass Bioenergy 2005, 29, 10–21, doi:10.1016/j.biombioe.2005.02.005.
[42]
Verwijst, T. Cyclic and progressive changes in short-rotation willow coppice systems. Biomass Bioenergy 1996, 11, 161–165, doi:10.1016/0961-9534(96)00016-5.
[43]
Ridge, C.R.; Hincley, T.H.; Settler, R.E.; van Volkenurg, E. Leaf growth characteristics of fast-growing poplar hybrids Populus trichocarpa × P. deltoids. Tree Physiol. 1986, 1, 209–216, doi:10.1093/treephys/1.2.209.
[44]
Taylor, G.; Beckett, K.P.; Robinson, K.M.; Stiles, K.; Rae, A.M. Identifying QTL for yield in UK biomass poplar. Asp. Appl. Biol. 2001, 65, 173–182.