全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2012 

DAYCENT Simulations to Test the Influence of Fire Regime and Fire Suppression on Trace Gas Fluxes and Nitrogen Biogeochemistry of Colorado Forests

DOI: 10.3390/f3030506

Keywords: fire regime, fire suppression, fire exclusion, Colorado Front Range, fire, trace gas, soil, methane, nitrous oxide, nitric oxide, nitrification rates, ponderosa pine

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biological activity and the physical environment regulate greenhouse gas fluxes (CH 4, N 2O and NO) from upland soils. Wildfires are known to alter these factors such that we collected daily weather records, fire return intervals, or specific fire years, and soil data of four specific sites along the Colorado Front Range. These data were used as primary inputs into DAYCENT. In this paper we test the ability of DAYCENT to simulate four forested sites in this area and to address two objectives: (1) to evaluate the short-term influence of fire on trace gas fluxes from burned landscapes; and (2) to compare trace gas fluxes among locations and between pre-/post- fire suppression. The model simulations indicate that CH 4 oxidation is relatively unaffected by wildfire. In contrast, gross nitrification rates were reduced by 13.5–37.1% during the fire suppression period. At two of the sites, we calculated increases in gross nitrification rates (>100%), and N 2O and NO fluxes during the year of fire relative to the year before a fire. Simulated fire suppression exhibited decreased gross nitrification rates presumably as nitrogen is immobilized. This finding concurs with other studies that highlight the importance of forest fires to maintain soil nitrogen availability.

References

[1]  Moritz, M.A.; Morais, M.E.; Summerell, L.A.; Carlson, J.M.; Doyle, J. Wildfires, complexity, and highly optimized tolerance. Proc. Natl. Acad. Sci. USA 2005, 102, 17912–17917, doi:10.1073/pnas.0508985102. 16332964
[2]  Donnegan, J.A.; Veblen, T.T.; Sibold, J.S. Climatic and human influences on fire history in pike national forest, central Colorado. Can. J. For. Res. 2001, 31, 1526–1539, doi:10.1139/x01-093.
[3]  Brown, P.M.; Kaufmann, M.R.; Shepperd, W.D. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado. Landsc. Ecol. 1999, 14, 513–532, doi:10.1023/A:1008137005355.
[4]  Swetnam, T.W.; Allen, C.D.; Betancourt, J.L. Applied historical ecology: Using the past to manage for the future. Ecol. Appl. 1999, 9, 1189–1206, doi:10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2.
[5]  Fule, P.Z.; Covington, W.W.; Moore, M.M. Determining reference conditions for ecosystem management of southwestern ponderosa pine forests. Ecol. Appl. 1997, 7, 895–908, doi:10.1890/1051-0761(1997)007[0895:DRCFEM]2.0.CO;2.
[6]  Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.-P.; Harnik, N.; Leetmaa, A.; Lau, N.-C.; et al. Model projections of an imminent transition to a more arid climate in southwestern north america. Science 2007, 316, 1181–1184, doi:10.1126/science.1139601.
[7]  Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. Forest wildfire activity. Science 2006, 313, 940–943, doi:10.1126/science.1128834. 16825536
[8]  Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The impact of boreal forest fire on climate warming. Science 2006, 314, 1130–1132, doi:10.1126/science.1132075. 17110574
[9]  Del Grosso, S.J.; Parton, W.J.; Mosier, A.R.; Ojima, D.S.; Potter, C.S.; Borken, W.; Brumme, R.; Butterbach-Bahl, K.; Crill, P.M.; Dobbie, K.; et al. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Glob. Biogeochem. Cycles 2000, 14, 999–1019, doi:10.1029/1999GB001226.
[10]  Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. Daycent and its land surface submodel: Description and testing. Glob. Planet. Change 1998, 19, 35–48, doi:10.1016/S0921-8181(98)00040-X.
[11]  Parton, W.J.; Holland, E.A.; Del Grosso, S.J.; Hartman, M.D.; Martin, R.E.; Mosier, A.R.; Ojima, D.S.; Schimel, D.S. Generalized model for nox and N2O emissions from soils. J. Geophys. Res.-Atmos. 2001, 106, 17403–17419, doi:10.1029/2001JD900101.
[12]  Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179, doi:10.2136/sssaj1987.03615995005100050015x.
[13]  Parton, W.J.; Stewart, J.W.B.; Cole, C.V. Dynamics of C, N, P, and S in grassland soils: A model. Biogeochemistry 1988, 5, 109–131, doi:10.1007/BF02180320.
[14]  Davidson, E.A.; Verchot, L.V. Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the tragnet database. Glob. Biogeochem. Cycles 2000, 14, 1035–1043, doi:10.1029/1999GB001223.
[15]  Conrad, R. Soil microbial processes and the cycling of atmospheric trace gases. Philos. Trans. Phys. Sci. Eng. 1995, 351, 219–230, doi:10.1098/rsta.1995.0030.
[16]  Keane, R.E.; Ryan, K.C.; Veblen, T.T.; Allen, C.D.; Logan, J.; Hawkes, B. Cascading Effects of Fire Exclusion in Rocky Mountian Ecosystems: A Literature Review; RMRS-GTR-91; Rocky Mountain Research Station, Forest Service, United States Department of Agriculture: Washington, DC, USA, 2002; p. 31.
[17]  NOAA. Western regional climate center. National Climatic Data Center. 2012. Available online: http://www.wrcc.dri.edu/Climsum.html (accessed on July 2007).
[18]  Veblen, T.T.; Kitzberger, T.; Donnegan, J. Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecol. Appl. 2000, 10, 1178–1195, doi:10.1890/1051-0761(2000)010[1178:CAHIOF]2.0.CO;2.
[19]  Brown, P.M.; Shepperd, W.D. Fire history and fire climatology along a 5-degree gradient in latitude in Colorado and Wyoming, USA. Paleobotanist 2001, 50, 133–140.
[20]  Sherriff, R.L.; Veblen, T.T. Ecological effects of changes in fire regimes in pinus ponderosa ecosystems in the Colorado Front Range. J. Veg. Sci. 2006, 17, 705–718.
[21]  Mast, J.N.; Veblen, T.T. Tree spatial patterns and stand development along the pine-grassland ecotone in the Colorado Front Range. Can. J. For. Res. 1999, 29, 575–584, doi:10.1139/x99-025.
[22]  Mast, J.N.; Veblen, T.T.; Linhart, Y.B. Disturbance and climatic influences on age structure of ponderosa pine at the pine/grassland ecotone, Colorado Front Range. J. Biogeogr. 1998, 25, 743–755, doi:10.1046/j.1365-2699.1998.2540743.x.
[23]  Peet, R.K. Forest vegetation of the Colorado Front Range—Composition and dynamics. Vegetatio 1981, 45, 3–75.
[24]  Peet, R.K. Forest vegetation of Colorado Front Range—patterns of species-diversity. Vegetatio 1978, 37, 65–78, doi:10.1007/BF00126830.
[25]  USDA. Web soil survey. USDA Natural Resource Conservation Service. 2012. Available online: http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm (accessed on July 2007).
[26]  Keogh, C. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA, Personal communication. 2007.
[27]  Shinneman, D.J.; Baker, W.L. Nonequilibrium dynamics between catastrophic disturbances and old-growth forests in ponderosa pine landscapes of the Black Hills. Conserv. Biol. 1997, 11, 1276–1288, doi:10.1046/j.1523-1739.1997.96198.x.
[28]  Li, X.; Meixner, T.; Sickman, J.O.; Miller, A.E.; Schimel, J.P.; Melack, J.M. Decadal-scale dynamics of water, carbon, and nitrogen in a California chaparral ecosystem: Daycent modeling results. Biogeochemistry 2006, 77, 217–245, doi:10.1007/s10533-005-1391-z.
[29]  Omi, P.N.; Kalabokidis, K.D. Fire damage on extensively versus intensively managed forest stands within the north fork fire, 1988. Northwest Sci. 1991, 65, 49–157.
[30]  Omi, P.N.; Martinson, E.J.; Chong, G.W. Effectiveness of Pre-Fire Fuel Treatments; Report; United States Forest Service’s Joint Fire Science Program: Fort Collins, CO, USA, 2006.
[31]  Law, B.E.; Thornton, P.E.; Irvine, J.; Anthoni, P.M.; van Tuyl, S. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Glob. Change Biol. 2001, 7, 755–777, doi:10.1046/j.1354-1013.2001.00439.x.
[32]  Hicke, J.A.; Sherriff, R.L.; Veblen, T.T.; Asner, G.P. Carbon accumulation in Colorado ponderosa pine stands. Can. J. For. Res.-Rev. 2004, 34, 1283–1295, doi:10.1139/x04-011.
[33]  Hall, S.A.; Burke, I.C.; Hobbs, N.T. Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence. Ecol. Appl. 2006, 16, 2344–2355, doi:10.1890/1051-0761(2006)016[2344:LADWDI]2.0.CO;2.
[34]  Irvine, J.; Law, B.E. Contrasting soil respiration in young and old-growth ponderosa pine forests. Glob. Change Biol. 2002, 8, 1183–1194, doi:10.1046/j.1365-2486.2002.00544.x.
[35]  Law, B.E.; Turner, D.; Campbell, J.; Sun, O.J.; van Tuyl, S.; Ritts, W.D.; Cohen, W.B. Disturbance and climate effects on carbon stocks and fluxes across western Oregon USA. Glob. Change Biol. 2004, 10, 1429–1444, doi:10.1111/j.1365-2486.2004.00822.x.
[36]  Hall, S.A.; Burke, I.C. Considerations for characterizing fuels as inputs for fire behavior models. For. Ecol. Manag. 2006, 227, 102–114, doi:10.1016/j.foreco.2006.02.022.
[37]  Gathany, M.A.; Burke, I.C. Post-fire soil fluxes of CO2, CH4 and N2O along the Colorado Front Range. Int. J. Wildland Fire 2011, 20, 838–846, doi:10.1071/WF09135.
[38]  Hart, S.C. Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: A soil transfer study. Glob. Change Biol. 2006, 12, 1032–1046, doi:10.1111/j.1365-2486.2006.01159.x.
[39]  Kaye, J.P.; Burke, I.C.; Mosier, A.R.; Guerschman, J.P. Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol. Appl. 2004, 14, 975–981, doi:10.1890/03-5115.
[40]  Sommerfeld, R.A.; Mosier, A.R.; Musselman, R.C. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 1993, 361, 140–142, doi:10.1038/361140a0.
[41]  Epstein, H.E.; Burke, I.C.; Mosier, A.R.; Hutchinson, G.L. Plant functional type effects on trace gas fluxes in the shortgrass steppe. Biogeochemistry 1998, 42, 145–168, doi:10.1023/A:1005959001235.
[42]  Mosier, A.R.; Parton, W.J.; Valentine, D.W.; Ojima, D.S.; Schimel, D.S.; Delgado, J.A. CH4 and N2O fluxes in the Colorado shortgrass steppe. 1. Impact of landscape and nitrogen addition. Glob. Biogeochem. Cycles 1996, 10, 387–399, doi:10.1029/96GB01454.
[43]  Mosier, A.R.; Parton, W.J.; Valentine, D.W.; Ojima, D.S.; Schimel, D.S.; Heinemeyer, O. CH4 and N2O fluxes in the Colorado shortgrass steppe. 2. Long-term impact of land use change. Glob. Biogeochem. Cycles 1997, 11, 29–42, doi:10.1029/96GB03612.
[44]  Smith, K.A.; Dobbie, K.E.; Ball, B.C.; Bakken, L.R.; Sitaula, B.K.; Hansen, S.; Brumme, R.; Borken, W.; Christensen, S.; Prieme, A.; et al. Oxidation of atmospheric methane in northern european soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob. Change Biol. 2000, 6, 791–803, doi:10.1046/j.1365-2486.2000.00356.x.
[45]  Matson, P.A.; Gower, S.T.; Volkmann, C.; Billow, C.; Grier, C.C. Soil-nitrogen cycling and nitrous-oxide flux in a rocky-mountain douglas-fir forest: Effects of fertilization, irrigation and carbon addition. Biogeochemistry 1992, 18, 101–117, doi:10.1007/BF00002705.
[46]  McLain, J.E.T.; Martens, D.A. Moisture controls on trace gas fluxes in semiarid riparian soils. Soil Sci. Soc. Am. J. 2006, 70, 367–377, doi:10.2136/sssaj2005.0105.
[47]  Stark, J.M.; Smart, D.R.; Hart, S.C.; Haubensak, K.A. Regulation of nitric oxide emissions from forest and rangeland soils of western north america. Ecology 2002, 83, 2278–2292, doi:10.1890/0012-9658(2002)083[2278:RONOEF]2.0.CO;2.
[48]  Levine, J.S.; Winstead, E.L.; Boston, P.J. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide. Glob. Biogeochem. Cycles 1988, 2, 445–449, doi:10.1029/GB002i004p00445.
[49]  Stark, J.M.; Hart, S.C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 1997, 385, 61–64, doi:10.1038/385061a0.
[50]  Hamman, S.T. Altered fire regime impacts on the soil biogeochemistry and microbial community structure of mixed conifer and ponderosa pine forests. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2006.
[51]  Hamman, S.T.; Burke, I.C.; Stromberger, M.E. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 2007, 39, 1703–1711, doi:10.1016/j.soilbio.2007.01.018.
[52]  Carreira, J.A.; Niell, F.X.; Lajtha, K. Soil-nitrogen availability and nitrification in mediterranean shrublands of varying fire history and successional stage. Biogeochemistry 1994, 26, 189–209.
[53]  Covington, W.W.; Sackett, S.S. Effect of periodic burning on soil nitrogen concentrations in ponderosa pine. Soil Sci. Soc. Am. J. 1986, 50, 452–457, doi:10.2136/sssaj1986.03615995005000020040x.
[54]  Covington, W.W.; Sackett, S.S. Soil mineral nitrogen changes following prescribed burning in ponderosa pine. For. Ecol. Manag. 1992, 54, 175–191, doi:10.1016/0378-1127(92)90011-W.
[55]  Wan, S.Q.; Hui, D.F.; Luo, Y.Q. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis. Ecol. Appl. 2001, 11, 1349–1365, doi:10.1890/1051-0761(2001)011[1349:FEONPA]2.0.CO;2.
[56]  Schimel, J.P.; Gulledge, J. Microbial community structure and global trace gases. Glob. Change Biol. 1998, 4, 745–758, doi:10.1046/j.1365-2486.1998.00195.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133