Wildfire occurrence and intensity have increased over the last few decades and, at times, have been national news. Wildfire occurrence is somewhat predictable based on physical factors like meteorological conditions, fuel loads, and vegetation dynamics. Socioeconomic factors have been not been widely used in wildfire occurrence models. We used a geospatial (or geographical information system) analysis approach to identify socioeconomic variables that contribute to wildfire occurrence. Key variables considered were population change, population density, poverty rate, educational level, geographic mobility, and road density (transportation network). Hot spot analysis was the primary research tool. Wildfire occurrence seemed to be positively related to low population densities, low levels of population change, high poverty rate, low educational attainment level, and low road density. Obviously, some of these variables are correlated and this is a complex problem. However, socioeconomic variables appeared to contribute to wildfire occurrence and should be considered in development of wildfire occurrence forecasting models.
References
[1]
Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warning and earlier spring increase western forest wildfire activity. Science 2006, 313, 940–943.
[2]
Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329–342, doi:10.1071/WF01032.
[3]
Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402.
[4]
Firewise in the Wildland-Urban Interface (WUI); South Carolina Forestry Commission: Columbia, SC, USA, 2011. Available online: http://www.state.sc.us/forest/nfpacc.htm (accessed on 27 December 2011).
[5]
State and County QuickFacts (South Carolina); U.S. Census Bureau: Washington, DC, USA, 2011. Available online: http://quickfacts.census.gov (accessed on 27 December 2011).
[6]
Perry, G.L.W. Current approaches to modelling the spread of wildland fire: A review. Prog. Phys. Geogr. 1998, 22, 222–245.
[7]
Mercer, D.E.; Prestemon, J.P. Comparing production function models for wildfire risk analysis in the wildland-urban interface. For. Pol. Econ. 2005, 7, 782–795, doi:10.1016/j.forpol.2005.03.003.
[8]
Keane, R.E.; Burgan, R.; van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 2001, 10, 301–319, doi:10.1071/WF01028.
[9]
Crimmins, M.A. Synoptic climatology of extreme fire-weather conditions across the southwest United States. Int. J. Climatol. 2006, 26, 1001–1016, doi:10.1002/joc.1300.
[10]
Viegas, D.X.; Bovio, G.; Ferreira, A.; Sol, B. Comparative study of various methods of fire danger evaluation in southern Europe. Int. J. Wildland Fire 1999, 9, 235–246, doi:10.1071/WF00015.
[11]
Roads, J.O.; Ueyoshi, K.; Chen, S.C.; Albert, J.; Fujioka, F. Medium-range fire weather forecasts. Int. J. Wildland Fire 1991, 1, 159–176, doi:10.1071/WF9910159.
[12]
Knapp, P.A. Intermountain West lightning-caused fires: Climatic predictors of area burned. J. Range Manage. 1995, 48, 85–91, doi:10.2307/4002510.
[13]
Haines, D.A. Where to Find Weather and Climate Data for Forest Research Studies and Management Planning (General Technical Report NC-27); USDA Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1977.
[14]
Krusel, N.; Packham, D.; Tapper, N. Wildfire activity in the Mallee Shrubland of Victoria, Australia. Int. J. Wildland Fire 1993, 3, 217–227, doi:10.1071/WF9930217.
[15]
Schoenberg, F.P.; Chang, C.; Keeley, J.E.; Pompa, J.; Woods, J.; Xu, H. A critical assessment of the burning index in Los Angeles County, California. Int. J. Wildland Fire 2007, 16, 473–483.
[16]
Haines, D.A.; Main, W.A.; Frost, J.S.; Simard, A.J. Fire-danger rating and wildfire occurrence in the northeastern United States. For. Sci. 1983, 29, 679–696.
[17]
Beckage, B.; Platt, W.J. Predicting severe wildfires in the Florida Everglades. Front. Ecol. Environ. 2003, 1, 235–239, doi:10.1890/1540-9295(2003)001[0235:PSWYIT]2.0.CO;2.
[18]
Gaining an Understanding of the National Fire Danger Rating System (PMS 932); Schlobohm, P., Brain, J., Eds.; National Wildfire Coordinating Group: Boise, ID, USA, 2002.
[19]
Andrews, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of the fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213–226, doi:10.1071/WF02059.
[20]
Fried, J.S.; Gilless, J.K. Stochastic representation of fire occurrence in a wildland fire protection model for California. For. Sci. 1988, 34, 948–959.
[21]
Deeming, J.E.; Brown, J.K. Fuel models in the national fire-danger rating system. J. For. 1975, 73, 347–350.
[22]
Taylor, S.W.; Alexander, M.E. Science, technology, and human factors in fire danger rating: The Canadian experience. Int. J. Wildland Fire 2006, 15, 121–135, doi:10.1071/WF05021.
[23]
Cardille, J.A.; Ventura, S.J. Occurrence of wildfires in the northern Great Lakes Region: Effects of land cover and land ownership assessed at multiple-scales. Int. J. Wildland Fire 2001, 10, 145–154, doi:10.1071/WF01010.
[24]
Catry, F.X.; Rego, F.C.; Bac?o, F.L.; Moreira, F. Modeling and mapping wildfire ignition in Portugal. Int. J. Wildland Fire 2009, 18, 921–931, doi:10.1071/WF07123.
[25]
Venersky, S.; Thonicke, K.; Sitch, S.; Cramer, W. Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Glob Change Biol. 2002, 8, 984–998, doi:10.1046/j.1365-2486.2002.00528.x.
[26]
Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in South Africa. Glob. Change Biol. 2009, 15, 613–630.
[27]
Stocks, B.J.; Lynham, T.J.; Lawson, B.D.; Alexander, M.E.; van Wagner, C.E.; Alpine, R.S.; Dubé, D.E. The Canadian forest fire danger rating system: An overview. For. Chron. 1989, 6, 450–457.
[28]
Whiteman, C.D. Observations of thermally developed wind systems in mountainous terrain. Meterol. Monogr. 1990, 23, 5–42.
[29]
Wildfire in South Carolina; South Carolina Forestry Commission: Columbia, SC, USA, 2011. Available online: http://www.state.sc.us/forest/refwild.htm#causes (accessed on 27 December 2011).
[30]
Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol. Appl. 2001, 11, 111–127.
[31]
Radeloff, V.C.; Hammer, R.B.; Stewart, S.L.; Fried, J.S.; Holcomb, S.S.; McKeetry, J.F. The wildland-urban interface in the United States. Ecol. Appl. 2005, 15, 799–805.
[32]
Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.J.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402.
[33]
Haight, R.G.; Cleland, D.T.; Hammer, R.B.; Radeloff, V.C.; Rupp, T.S. Assessing fire risk in the wildland-urban interface. J. For. 2004, 102, 41–48.
[34]
Yuan, M. Use of knowledge acquisition to build wildfire representation in geographical information systems. Int. J. Geogr. Inf. Sci. 1997, 11, 723–746, doi:10.1080/136588197242059.
[35]
Romero-Calcerrada, R.; Novillo, C.J.; Millington, J.D.A.; Gomez-Jimenez, I. GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecol. 2008, 23, 341–354, doi:10.1007/s10980-008-9190-2.
[36]
Pew, K.L.; Larsen, C.P.S. GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. For. Ecol. Manage. 2001, 140, 1–18, doi:10.1016/S0378-1127(00)00271-1.
[37]
Martinez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manage. 2009, 90, 1241–1252.
[38]
Gaither, C.J.; Poudyal, N.C.; Goodrich, S.; Bowker, J.M.; Malone, S.; Gan, J. Wildland fire risk and social vulnerability in the southeastern United States: An exploratory spatial data analysis approach. For. Pol. Econ. 2011, 13, 24–36.
[39]
About the Keetch-Byram Drought Index (KBDI); Florida Forest Service: Tallahassee, FL, USA, 2004. Available online: http://www.fl-dof.com/fire_weather/information/kbdi.html (accessed on 27 December 2011).
[40]
Melton, M. The Keetch/Byram Drought Index: A guide to fire conditions and suppression problems. Fire Manage. Note. 1989, 50, 30–34.
[41]
South Carolina GAP Analysis Project–GAP Data Overview; South Carolina Department of Natural Resources: Columbia, SC, USA, 2010. Available online: http://www.dnr.sc.gov/GIS/gap/mapping.html (accessed on 14 April 2012).
[42]
American FactFinder: American Community Survey; U.S. Census Bureau: Washington, DC, USA, 2011. Available online: http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml (accessed on 20 January 2012).
[43]
ESRI: Understanding Our World; Environmental Systems Research Institute: Redlands, CA, USA, 2011. Available online: http://www.esri.com/software/arcgis/arcgis10/index.html (accessed on 20 January 2012).
[44]
ArcGIS Desktop 9.3 Help; Environmental Systems Research Institute: Redlands, CA, USA, 2011. Available online: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=welcome (accessed on 27 December 2011).
[45]
Income, Poverty and Health Insurance Coverage in the United States: 2010. U.S. Census Bureau: Washington, DC, USA, 2011. Available online: http://www.census.gov/newsroom/releases/archives/income_wealth/cb11-157.html (accessed on 27 December 2011).
[46]
Transportation United States; GeoCommunity: Niceville, FL, USA, 2011. Available online: http://data.geocomm.com/catalog/US/group6.html (accessed on 27 December 2011).
[47]
Gilliam, F.; Christensen, N. Herb-layer response to burning in Pine Flatwoods of the lower coastal plain of South Carolina. Bull. Torrey Bot. Club 1986, 113, 42–45, doi:10.2307/2996233.