Cyclaneusma needle-cast has a major impact on the New Zealand forest industry. The causal agent, Cyclaneusma minus, causes most severe damage to 11–20 year-old trees and currently there are no economically viable procedures for control of the disease in New Zealand. Here we present a method for genetic transformation of C. minus using protoplasts generated by incubation with Glucanex? enzyme. C. minus was transformed with a gene encoding green fluorescent protein (GFP) and expression was stable after successive sub-culturing of the strain in the absence of selective pressure. Expression of the gfp gene allowed us to utilize an in vitro GFP-based screening method to identify strains of Trichoderma with potential for biocontrol of this disease. The strain that showed the most promise as a potential biocontrol candidate exhibited a low level of inhibition by uncharacterized metabolite(s) that C. minus secretes into the medium, and consistently caused a loss of GFP expression from the GFP-labeled C. minus strain. The interaction between C. minus and the biocontrol strain, in the interaction zone where GFP expression was lost, was determined to be fungicidal. The utility of such biocontrol strains is discussed. This study represents the first genetic manipulation of C. minus and will pave the way for further studies of the life cycle and infection biology of this organism.
References
[1]
DiCosmo, F.; Peredo, H.; Minter, D.W. Cyclaneusma gen. nov., Naemacyclus and Lasiostictis, a nomenclatural problem resolved. Eur. J. For. Path. 1983, 13, 206–212, doi:10.1111/j.1439-0329.1983.tb00119.x.
[2]
Bulman, L.S.; Gadgil, P.D. Cyclaneusma needle-cast in New Zealand,Forest Research Bulletin No. 222; Forest Research: Rotorua, New Zealand, 2001.
[3]
Gadgil, P.D. Cyclaneusma (Naemacyclus) needle-cast of Pinus radiata in New Zealand. 1. Biology of Cyclaneusma minus. New Zeal. J. For. Sci. 1984, 14, 179–196.
[4]
Gernandt, D.S.; Platt, J.L.; Stone, J.K.; Spatafora, J.W.; Holst-Jensen, A.; Hamelin, R.C.; Kohn, L.M. Phylogenetics of Helotiales and Rhytismatales based on partial small subunit nuclear ribosomal DNA sequences.. Mycologia 2001, 93, 915–933, doi:10.2307/3761757.
[5]
Lantz, H.; Johnston, P.R.; Park, D.; Minter, D.W. Molecular phylogeny reveals a core clade of Rhytismatales.. Mycologia 2011, 103, 57–74, doi:10.3852/10-060. 20943536
[6]
Kistler, B.R.; Merrill, W. Etiology, symptomology, epidemiology and control of Naemacyclus needle-cast of Scots pine.. Phytopathology 1977, 68, 267–271.
[7]
Merrill, W.; Wenner, N.G. Cyclaneusma needle-cast and needle retention in Scots Pine. Plant Dis. 1996, 80, 294–298, doi:10.1094/PD-80-0294.
[8]
Helander, M.L.; Sieber, T.N.; Petrini, O.; Neuvonen, S. Endophytic fungi in Scots Pine needles—Spatial variation and consequences of simulated acid-rain.. Can. J. Bot. 1994, 72, 1108–1113, doi:10.1139/b94-135.
[9]
Kowalski, T. Fungi in living symptomless needles of Pinus sylvestris with respect to some observed disease processes.. J. Phytopathol. 1993, 139, 129–145, doi:10.1111/j.1439-0434.1993.tb01409.x.
[10]
Sieber, T.N.; Rys, J.; Holdenrieder, O. Mycobiota in symptomless needles of Pinus mugo ssp. uncinata. Mycol. Res. 1999, 103, 306–310, doi:10.1017/S0953756298007229.
[11]
Drenkhan, R.; Hanso, M. Recent invasion of foliage fungi of pines (Pinus spp.) to the Northern Baltics. For. Stud. 2009, 51, 49–64.
[12]
Crous, P.W.; Wingfield, M.J.; Swart, W.J. Shoot and needle diseases of Pinus spp. in South Africa. South African For. J. 1990, 60–66.
[13]
Bulman, L. Quantifying pest impact and spread: Cyclaneusma needle-cas. Forest Biosecurity and Protection Annual Science Report; Scion: Rotorua, New Zealand, 2009; pp. 60–66. Available online: http://www.scionresearch.com/general/science-publications/science-publications/technical-reports/for , accessed on 20 November 2011.
[14]
Gadgil, P.D. Symptoms and pathogenicity. In Cyclaneusma needle-cast in New Zealand,Forest Research Bulletin No. 222; Gadgil, P.D., Bulman, L.S., Eds.; Forest Research: Rotorua, New Zealand, 2001.
[15]
Bulman, L. Scion (New Zealand Forest Research Institute Ltd), Rotorua, New Zealand. 2011.
[16]
Dick, M.A.; Somerville, J.G.; Gadgil, P.D. Variability in the fungal population. In Cyclaneusma needle-cast in New Zealand,Forest Research Bulletin No. 222; Gadgil, P.D., Bulman, L.S., Eds.; Forest Research: Rotorua, New Zealand, 2001; pp. 12–19.
[17]
Glen, M.; Prihatini, I.; Smith, T.; Wardlaw, T.; Mohammed, C. Spring Needlecast in Tasmania—Fungal Communities and Environmental Factors. Presented at ACPP APPS 2011; New Frontiers in Plant Pathology for Asia and Oceania: Darwin, Australia; pp. 12–19. Available online: http://www.appsnet.org/Publications/Proceedings/APPS%202011%20Handbook.pdf (accessed on 20 November 2011).
[18]
Lorang, J.M.; Tuori, R.P.; Martinez, J.P.; Sawyer, T.L.; Redman, R.S.; Rollins, J.A.; Wolpert, T.J.; Johnson, K.B.; Rodriguez, R.J.; Dickman, M.B.; Ciuffetti, L.M. Green fluorescent protein is lighting up fungal biology.. App. Environ. Microbiol. 2001, 67, 1987–1994, doi:10.1128/AEM.67.5.1987-1994.2001.
[19]
Larrainzar, E.; O’Gara, F.; Morrissey, J.P. Applications of autofluorescent proteins for in situ studies in microbial ecology.. Annu. Rev. Phytopathol. 2005, 59, 257–277.
McLean, T.; Fourie, P.H.; McLeod, A. Reporter gene transformation of the trunk disease pathogen Phaeomoniella chlamydospora and biological control agent Trichoderma harzianum.. Australas. Plant. Path. 2009, 38, 153–167, doi:10.1071/AP08090.
[22]
Bulman, L.S. Economic impact of Cyclaneusma Needlecast in New Zealand. In Client Report No. 16815; Scion: Rotorua, New Zealand, 2009.
[23]
Hood, I.A.; Bulman, L.S. Chemical control. In Cyclaneusma Needle-Cast in New Zealand,Forest Research Bulletin No. 222; Gadgil, P.D., Bulman, L.S., Eds.; Forest Research: Rotorua, New Zealand, 2001; pp. 12–19.
[24]
Watt, M.; Rolando, C.; Palmer, D.; Bulman, L.S. Predicting the severity of Cyclaneusma minus on Pinus radiata in New Zealand. Forest Health News. 2011, p. 217. Available online: http://www.scionresearch.com/general/science-publications/science-publications/science-newsletters/f (accessed on 20 November 2011).
[25]
Reglinski, T.; Dick, M. Biocontrol of forest nusery pathogens.. New Zeal. J. For. Sci. 2005, 50, 19–26.
[26]
Valiente, C.; Diaz, K.; Gacitúa, S.; Martinez, M.; Sanfuentes, E. Control of charcoal root rot in Pinus radiata nurseries with antagonistic bacteria.. World J. Microb. Biot. 2008, 24, 557–568, doi:10.1007/s11274-007-9510-8.
[27]
Held, B.W.; Thwaites, J.M.; Farrell, R.L.; Blanchette, R.A. Albino strains of Ophiostoma species for biological control of sapstaining fungi.. Holzforschung 2003, 57, 237–242, doi:10.1515/HF.2003.036.
[28]
Vanneste, J.L.; Hill, R.A.; Kay, S.J.; Farrell, R.L.; Holland, P.T. Biological control of sapstain fungi with natural products and biological control agents: A review of the work carried out in New Zealand.. Mycol. Res. 2002, 106, 228–232, doi:10.1017/S0953756201005020.
[29]
Schoeman, M.W.; Webber, J.F.; Dickinson, D.J. The development of ideas in biological control applied to forest products.. Int. Biodeter. Biodegr. 1999, 43, 109–123, doi:10.1016/S0964-8305(99)00037-2.
[30]
Reglinski, T.; Rodenburg, N.; Taylor, J.T.; Northcott, G.L.; Chee, A.A.; Spiers, T.M.; Hill, R.A. Trichoderma atroviride promotes growth and enhances systemic resistance to?Diplodia pinea in radiata pine (Pinus radiata) seedlings. For. Pathol. 2012, 42, 75–78, doi:10.1111/j.1439-0329.2010.00710.x.
[31]
Hill, R.A.; Paderes, D.E.; Wigley, P.J.; Broadwell, A.H. Growth of Pinus radiata seedlings in the nursery with novel microbial formulations.. N. Z. Plant Protect. 2007, 60, 305.
[32]
Hill, R.A.; Stewart, A.; Hohmann, P.; Braithwaite, M.; Clouston, A.; Minchin, R. Enhancing growth and health of Pinus radiata in New Zealand and Acacia mangium in Malaysia with selected Trichoderma isolates. In Proceedings of the 11th International workshop on Trichoderma and Gliocladium, 13 October 2010; Haifa, Israel.
[33]
Stewart, A.; Wang, W.-Y.; Hill, R.A.; Paderes, D.E. Development of a bio-protection system for Pinus radiata with Trichoderma (ArborGuard?). In Proceedings of the 4th Australasian Soilborne Diseases Symposium, 3–6 September 2006; Queenstown, New Zealand.
[34]
Sanfuentes, E.; González, G.; Zaldúa, S.; Opazo, A.; Moraga-Suazo, P. Evaluation of Trichoderma spp. and Clonostachys spp. strains to control Fusarium circinatum in Pinus radiata seedlings. Chil. J. Agri. Res. 2011, 71, 412–417, doi:10.4067/S0718-58392011000300011.
[35]
Bradshaw, R.; Stewart, A.; Schwelm, A.; Yang, S.; McDougal, R. A novel GFP-based approach for screening biocontrol microorganisms in vitro against Dothistroma septosporum.. J. Microbiol. Meth. 2011, 87, 32–37, doi:10.1016/j.mimet.2011.07.004.
Dyer, P.S.; Jones, W.T.; Ganley, R.J.; Bradshaw, R.E. High levels of dothistromin toxin produced by the forest pathogen Dothistroma pini.. Mycol. Res. 2000, 104, 325–332, doi:10.1017/S0953756299001367.
[38]
Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbour Laboratory Press: New York, NY, USA, 1989.
[39]
Scott, D.B.; Forester, N.; Bidlake, A.; Bradshaw, R.E. Transformation of the fungal forest pathogen Dothistroma pini to hygromycin resistance.. Mycol. Res. 1997, 101, 1247–1250, doi:10.1017/S0953756297003870.
[40]
Doyle, J.L.; Doyle, J.J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15.