Longleaf pine has been classified as very shade intolerant but leaf physiological plasticity to light is not well understood, especially given longleaf pine’s persistent seedling grass stage. We examined leaf morphological and physiological responses to light in one-year-old grass-stage seedlings and young trees ranging in height from 4.6 m to 6.3 m to test the hypothesis that young longleaf pine would demonstrate leaf phenotypic plasticity to light environment. Seedlings were grown in a greenhouse under ambient levels of photosynthetically active radiation (PAR) or a 50% reduction in ambient PAR and whole branches of trees were shaded to provide a 50% reduction in ambient PAR. In seedlings, shading reduced leaf mass per unit area (LMA), the light compensation point, and leaf dark respiration (R D), and increased the ratio of light-saturated photosynthesis to R D and chlorophyll b and total chlorophyll expressed per unit leaf dry weight. In trees, shading reduced LMA, increased chlorophyll a, chlorophyll b and total chlorophyll on a leaf dry weight basis, and increased allocation of total foliar nitrogen to chlorophyll nitrogen. Changes in leaf morphological and physiological traits indicate a degree of shade tolerance that may have implications for even and uneven-aged management of longleaf pine.
References
[1]
Brockway, D.G.; Lewis, C.E. Long-term effects of dormant-season prescribed fire in plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. For. Ecol. Manag. 1997, 96, 167–183, doi:10.1016/S0378-1127(96)03939-4.
[2]
Gilliam, F.S.; Platt, W.J. Effects of long-term fire exclusion on tree species composition and stand structure in an old-growth Pinus palustris (longleaf pine) forest. Plant Ecol. 1999, 140, 15–26, doi:10.1023/A:1009776020438.
[3]
Baldocchi, D.D.; Collineau, S. The physical nature of solar radiation in heterogeneous canopies: Spatial and temporal attributes. In Exploitation of Environmental Heterogeneity by Plants, Ecophysiological Processes Above and Below Ground; Caldwell, M.M., Pearcy, R.W., Eds.; Academic Press: London, UK, 1994; pp. 21–71.
[4]
Brockway, D.G.; Outcalt, K.W.; Boyer, W.D. Longleaf pine regeneration ecology and methods. In The Longleaf Pine Ecosystem, Ecology, Silviculture and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 95–134.
[5]
Baker, F.S. A revised shade tolerance table. J. For. 1949, 47, 179–181.
Rodriguez-Trejo, D.A.; Duryea, M.L.; White, T.L.; English, J.R.; McGuire, J. Artificially regenerating longleaf pine in canopy gaps: Initial survival and growth during a year of drought. For. Ecol. Manag. 2003, 180, 25–36, doi:10.1016/S0378-1127(02)00557-1.
[8]
McGuire, J.P.; Mitchell, R.J.; Moser, E.B.; Pecot, S.D.; Gjerstad, D.H.; Hedman, C.W. Gaps in a gappy forest: Plant resources, longleaf pine regeneration, and understory response to tree removal in longleaf pine savannas. Can. J. For. Res. 2001, 31, 765–778, doi:10.1139/x01-003.
[9]
Bhuta, A.A.; Kenneday, R.L.M.; Copenheaver, C.A.; Sheridan, P.M.; Campbell, J.B. Boundary-line patterns to determine disturbance history of remnant longleaf pine (Pinus palustris P. Mill.) in mixed forests of southeastern Virginia. J. Torrey Bot. Soc. 2008, 135, 516–529.
[10]
Keeley, J.E.; Zedler, P.H. Evolution of life histories in Pinus. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 219–250.
[11]
Wahlenberg, W.G. Longleaf Pine: Its Use, Ecology, Regeneration, Protection, Growth, and Management; Charles Lathrop Pack Forestry Foundation: Washington, DC, USA, 1946.
[12]
Platt, E.J.; Evans, G.W.; Rathbun, S.L. The population dynamics of a long-lived conifer (Pinus palustris). Am. Nat. 1998, 131, 491–525.
[13]
Boyer, W.D. Pinus palustris Mill. longleaf pine. In Silvics of North America, Conifers; Burns, R.M., Honkala, B.H., Eds.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 1, pp. 405–412.
[14]
Pessin, L.J. Annual ring formation in Pinus palustris seedlings. Am. J. Bot. 1934, 21, 599–601, doi:10.2307/2436111.
[15]
Pecot, S.D.; Mitchell, R.J.; Palik, B.J.; Moser, E.B.; Hiers, J.K. Competitive responses of seedlings and understory plants in longleaf pine woodlands: Separating canopy influences above and below ground. Can. J. For. Res. 2007, 37, 634–648, doi:10.1139/X06-247.
[16]
Harlow, W.H.; Harrar, E.S.; White, F.M. Textbook of Dendrology; McGraw-Hill Co.: New York, NY, USA, 1979; pp. 87–90.
[17]
Battaglia, M.A.; Mitchell, R.J.; Mou, P.P.; Pecot, S.D. Light transmittance estimates in a longleaf pine woodland. For. Sci. 2003, 49, 752–762.
[18]
Givnish, T.J. Adaptation to sun and shade: A whole plant perspective. Funct. Plant Biol. 1998, 15, 63–92.
[19]
Cregg, B.M.; Teskey, R.O.; Dougherty, P.M. Effect of shade stress on growth, morphology and carbon dynamics of loblolly pine branches. Trees 1993, 7, 208–213.
[20]
Henriksson, J. Differential shading of branches or whole trees: Survival, growth and reproduction. Oecologia 2001, 126, 482–486, doi:10.1007/s004420000547.
[21]
Lacointe, A.; Deleens, E.; Ameglio, T.; Saint-Joanis, B.; Lelarge, C.; Vandame, M.; Song, G.C.; Daudet, F.A. Testing the branch autonomy theory: A 13C/14C double-labeling experiment on differentially shaded branches. Plant Cell Environ. 2004, 27, 1159–1168, doi:10.1111/j.1365-3040.2004.01221.x.
[22]
Brooks, J.R.; Shulte, P.J.; Bond, B.J.; Coulombe, R.; Domec, J.C.; Hinkley, T.M.; McDowell, N.; Phillips, N. Does foliage on the same branch compete for the same water? Experiments on Douglas-fir trees. Trees 2003, 17, 101–108.
[23]
Hanson, P.J.; McRoberts, R.E.; Isebrands, J.G.; Dixon, R.K. An optimal strategy for determining CO2 exchange range rate as a function of photosynthetic photon flux density. Photosynthetica 1987, 21, 98–101.
[24]
Samuelson, L.J.; Seiler, J.R.; Feret, P.P. Gas exchange and canopy structure of 9-year-old loblolly pine, pitch pine and pitch x loblolly hybrids. Trees 1992, 6, 28–31.
[25]
Minocha, R.; Martinez, G.; Lyons, B.; Long, S. Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species. Can. J. For. Res. 2009, 39, 849–861, doi:10.1139/X09-015.
[26]
Lichtenthaler, J.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382, doi:10.1016/0076-6879(87)48036-1.
[27]
Zhang, S.; Hennesssey, T.C.; Heinemann, R.A. Acclimation of loblolly pine (Pinus taeda) foliage to light intensity as related to leaf nitrogen availability. Can. J. For. Res. 1997, 27, 1032–1040, doi:10.1139/x97-038.
[28]
Landh?usser, S.M.; Lieffers, V.J. Photosynthesis and carbon allocation of six boreal species grown in understory and open conditions. Tree Physiol. 2001, 21, 243–250, doi:10.1093/treephys/21.4.243.
[29]
Poorter, H.; Niinemets, ?.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588, doi:10.1111/j.1469-8137.2009.02830.x.
[30]
Wyka, T.; Robakowski, P.; Zytkowiak, R. Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance. Tree Physiol. 2007, 27, 1293–1306, doi:10.1093/treephys/27.9.1293.
[31]
Greenwood, M.S.; Day, M.E.; Berlyn, G.P. Regulation of foliar plasticity in conifers: Developmental and environmental factors. J. Sustain. For. 2009, 28, 48–62, doi:10.1080/10549810802626134.
[32]
Funk, J.L.; McDaniel, S. Altering light availability to restore invaded forest: The predictive role of plant traits. Restor. Ecol. 2010, 18, 865–872, doi:10.1111/j.1526-100X.2008.00515.x.
[33]
Jose, S.; Merritt, S.; Ramsey, C.L. Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen. For. Ecol. Manage. 2003, 180, 335–344, doi:10.1016/S0378-1127(02)00583-2.
[34]
Groninger, J.W.; Seiler, J.R.; Peterson, J.A.; Kreh, R.E. Growth and photosynthetic responses of four Virginia Piedmont trees species to shade. Tree Physiol. 1996, 16, 773–778, doi:10.1093/treephys/16.9.773.
[35]
Ellsworth, D.S.; Lukjanova, A.; Tobias, M. Dependence of needle architecture and chemical composition on canopy light availability in three North American Pinus species with contrasting needle length. Tree Physiol. 2002, 22, 747–761, doi:10.1093/treephys/22.11.747.
[36]
Niinemets, ?. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 2010, 25, 693–714, doi:10.1007/s11284-010-0712-4.
[37]
Salda?a, A.; Gianoli, E.; Lusk, C.H. Ecophysiological responses to light availability and three Blechem species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia 2005, 145, 252–257.
[38]
Walters, M.B.; Field, C.B. Photosynthetic light acclimation in two rainforest piper species with different ecological amplitudes. Oecologia 1987, 72, 449–456, doi:10.1007/BF00377578.
[39]
Larcher, W. Physiological Plant Ecology; Springer: New York, NY, USA, 1996.
[40]
Samuelson, L.; Stokes, T.; Cooksey, T.; McLemore, P., III. Production efficiency of loblolly pine and sweetgum in response to four years of intensive management. Tree Physiol. 2001, 21, 369–376, doi:10.1093/treephys/21.6.369.
[41]
Teskey, R.O.; Shrestha, R.B. A relationship between carbon dioxide, photosynthetic efficiency and shade tolerance. Physiol. Plant 1985, 63, 126–132, doi:10.1111/j.1399-3054.1985.tb02830.x.
[42]
Rebbeck, J.; Scherzer, A.; Gottschalk, K. Do chestnut, northern red, and white oak germinant seedlings respond similarly to light treatments? II. Gas exchange and chlorophyll responses. Can. J. For. Res. 2012, 42, 1025–1037, doi:10.1139/x2012-057.
[43]
Evans, J.R.; Poorter, J.H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767, doi:10.1046/j.1365-3040.2001.00724.x.
[44]
Terashima, I.; Hikosaka, K. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 1995, 18, 111–1128.
[45]
Christensen, N.L. Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina. Oecologia 1977, 31, 27–44, doi:10.1007/BF00348706.
[46]
Blevins, D.; Allen, H.L.; Colbert, S.; Gardner, W. Nutrition Management for Longleaf Pinestraw; Woodland Owner Notes-30; North Carolina (State University) Cooperative Extension Service: Raleigh, NC, USA, 1996.
[47]
Samuelson, L.J.; McLemore, P.C., III.; Somers, G.L. Relationship between foliar δ13C and hydraulic pathway length in Pinus palustris. For. Sci. 2003, 49, 790–798.
[48]
Jackson, D.P.; Dumroese, R.K.; Barnett, J.P. Nursery response of container Pinus palustris seedlings to nitrogen supply and subsequent effects on outplanting performance. For. Ecol. Manage. 2012, 265, 1–12, doi:10.1016/j.foreco.2011.10.018.
[49]
Landis, T.D.; Tinus, R.W.; McDonald, S.E.; Barnett, J.P. Seedling nutrition and irrigation. In The Container Tree Nursery Manual; Landis, T.D., Tinus, R.W., McDonald, S.E., Barnett, J.P., Eds.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1989; Volume 4, pp. 1–67.
[50]
Portsmuth, A.; Niinemets, ?. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Funct. Ecol. 2007, 21, 61–77.
[51]
Kitajima, K.; Hogan, K.P. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ. 2003, 26, 857–865, doi:10.1046/j.1365-3040.2003.01017.x.
[52]
Terashima, I.; Hanba, Y.T.; Tazoe, Y.; Vyas, P.; Yano, S. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 2006, 57, 343–354.
[53]
Fownes, J.H.; Harrington, R.A. Seedling response to gaps; separating effects of light and nitrogen. For. Ecol. Manage. 2004, 203, 297–310, doi:10.1016/j.foreco.2004.07.044.
[54]
Gulden, J.M. Uneven-aged silviculture of longleaf pine. In The Longleaf Pine Ecosystem, Ecology, Silviculture and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 217–241.
[55]
Gagnon, J.L.; Jokela, E.J.; Moser, W.K.; Huber, D.A. Dynamics of artificial regeneration in gaps within a longleaf pine flatwoods ecosystem. For. Ecol. Manag. 2003, 172, 133–144, doi:10.1016/S0378-1127(01)00808-8.
[56]
Lusk, C.H. Leaf area and growth of juvenile temperate evergreens in low light, species of contrasting shade tolerance change rank during ontogeny. Funct. Ecol. 2004, 18, 820–828, doi:10.1111/j.0269-8463.2004.00897.x.