|
中国物理快报 2007
Kondo Resonance versus Fano Interference in Double Quantum Dots Coupled to a Two-Lead One-Ring SystemKeywords: 72,10,Fk,72,15,Qm,73,23,Ra Abstract: We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov--Bhom (A-B) ring by means of the slave-boson mean-field theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this influence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for futuredevice applications.
|