Heat capacity measurements of κ-(BEDT-TTF) 2 X (BEDT-TTF: Bis(ethylendithio) tetrathiafulvalene, X: counteranions) which are classified as two-dimensional (2D) dimer-Mott system are reported. At first, we explain structural and electronic features originated from rigid dimerization in donor arrangement in 2D layers. The antiferromagnetic Mott insulating phase located at low-pressure region in the phase diagram shows vanishing γ electronic heat capacity coefficient in the heat capacity, which claims opening of a charge-gap in this insulating state. Then, a systematic change of the γ around the Mott boundary region is reported in relation to the glass freezing of ethylene dynamics. The thermodynamic parameters determined by ? Cp/ γT c of 10 K class superconductors, κ-(BEDT-TTF) 2Cu(NCS) 2 and κ-(BEDT-TTF) 2Cu[N(CN) 2]Br demonstrate that a rather large gap with a strong coupling character appears around the Fermi-surface. On the other hand, the low temperature heat capacity clearly shows a picture of nodal-gap structure due to an anisotropic pairing. The comparison with lower T c compounds in the κ-type structure is also performed so as to discuss overall features of the κ-type superconductors. The heat capacity measurements of hole-doped systems containing mercury in the counteranions show an anomalous enhancement of γ, which is consistent with the T 1 ?1 of NMR experiments etc. The results of heat capacity measurements under high pressures are also reported.
Williams, J.M.; Ferraro, J.R.; Thorn, R.J.; Carlson, K.D.; Geiser, U.; Wang, H.-H.; Kini, A.M.; Whangbo, M.-H. Organic Superconductors; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1992; pp. 65–179.
[3]
Bidan, G.; Bernier, P.; Lefrant, S. Advances in Synthetic Metals; Elsevier: Lausanne, Switzerland, 1999; pp. 262–348.
[4]
Kanoda, K. Metal-insulator transitions in κ-(ET)2X and (DCNQI)2M: Two contrasting manifestation of electron correlation. J. Phys. Soc. Jpn. 2006, 75, 051007:1–051007:16.
[5]
Miyagawa, K.; Kanoda, K.; Kawamoto, A. NMR Studies in Two-Dimensional Molecular Conductors and Superconductors: Mott Transition in κ-(BEDT-TTF)2X. Chem. Rev. 2004, 104, 5635–5653, doi:10.1021/cr0306541.
[6]
Gopal, E.S.R. Specific Heats at Low Temperatures; Plenum Press: New York, NY, USA, 1966.
[7]
Kanoda, K. Recent progress in NMR studies on organic conductors. Hyperfine Interactions 1997, 104, 235–249, doi:10.1023/A:1012696314318.
[8]
Kanoda, K. Electron correlation, metal-insulator and superconductivity in quasi-2D organic system, (ET)2X. Physica C 1997, 287, 299–302, doi:10.1016/S0921-4534(97)00266-9.
[9]
Kagawa, F.; Miyagawa, K.; Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 2005, 436, 534–537, doi:10.1038/nature03806.
[10]
Shimizu, Y.; Miyagawa, K.; Kanoda, K.; Maesato, M.; Saito, G. Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice. Phys. Rev. Lett. 2003, 91, 107001:1–107001:4.
[11]
Nakazawa, Y.; Kanoda, K. Electronic structure of insulating salts of the κ-(BEDT-TTF)2X family studied by low-temperature specific-heat measurements. Phys. Rev. B 1996, 53, R8875–R8878, doi:10.1103/PhysRevB.53.R8875.
[12]
Nakazawa, Y.; Kanoda, K. Thermodynamics of BEDT-TTF based Dimeric Salts. Synth. Met. 1999, 103, 1903–1904, doi:10.1016/S0379-6779(98)00606-7.
[13]
Taniguchi, H.; Miyashita, M.; Uchiyama, K.; Satoh, K.; Mori, N.; Okamoto, K.; Miyagawa, K.; Kanoda, K.; Hedo, M.; Uwatoko, Y. Superconductivity at 14.2 K in layered organics under extreme pressure. J. Phys. Soc. Jpn. 2003, 72, 468–471, doi:10.1143/JPSJ.72.468.
[14]
Yamashita, S.; Nakazawa, Y. Heat Capacities of Antiferromagnetic Dimer-Mott Insulators in Organic Charge-Transfer Complexes. J. Therm. Anal. Calorim. 2009, 99, 153–157, doi:10.1007/s10973-009-0566-6.
[15]
Nakazawa, Y.; Taniguchi, H.; Kawamoto, A.; Miyagawa, K.; Hiraki, K.; Kanoda, K. Thermodynamic studies of electron correlation effects on organic salts based on BEDT-TTF and DCNQI molecules. J. Phys. Chem. Solids 2001, 62, 385–388, doi:10.1016/S0022-3697(00)00171-2.
[16]
Sun, K.; Cho, J.H.; Chou, F.C.; Lee, W.C.; Miller, L.L.; Johnston, D.C.; Hidaka, Y.; Murakami, T. Heat capacity of single-crystal La2CuO4 and polycrystalline La2 ? xSrxCuO4 (0 ≤ x ≤ 0.20) from 110 to 600 K. Phys. Rev. B 1991, 43, 239–246.
[17]
Akutsu, H.; Saito, K.; Sorai, M. Phase behavior of the organic superconductors κ-(BEDT-TTF)2Cu[N(CN)2]X (X = Br and Cl) studied by ac calorimetry. Phys. Rev. B 2000, 61, 4346–4352, doi:10.1103/PhysRevB.61.4346.
[18]
Müller, J.; Lang, M.; Steglich, F.; Schlueter, J.A.; Kini, A.M.; Sasaki, T. Evidence for structural and electronic instabilities at intermediate temperatures in κ-(BEDT-TTF)2X for X = Cu[N(CN)2]Cl, Cu[N(CN)2]Br and Cu(NCS)2: implications for the phase diagram of these quasi-two-dimensional organic superconducors. Phys. Rev. B 2002, 65, 144521:1–144521:14.
[19]
Akutsu, H.; Saito, K.; Yamamura, Y.; Kikuchi, K.; Nishikawa, H.; Ikemoto, I.; Sorai, M. Metal-Insulator, SDW, and Glass Transitions in the Organic Conductors, (DMET)2BF4 and (DMET)2ClO4, Studied by ac Calorimetry. J. Phys. Soc. Jpn. 1999, 68, 1968–1974, doi:10.1143/JPSJ.68.1968.
[20]
Nakazawa, Y.; Kanoda, K. Thermodynamic investigation of the electronic states of deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1999, 60, 4263–4267, doi:10.1103/PhysRevB.60.4263.
[21]
Nakazawa, Y.; Taniguchi, H.; Kawamoto, A.; Kanoda, K. Electronic specific heat at the boundary region of the metal-insulator transition in the two-dimensional electronic system of κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 2000, 61, R16295–R16298.
[22]
Nakazawa, Y.; Taniguchi, H.; Kawamoto, A.; Kanoda, K. Electronic specific heat of BEDT-TTF based organic conductors. Physica B 2000, 281–282, 899–900, doi:10.1016/S0921-4526(99)00908-4.
[23]
Taylor, O.J.; Carrington, A.; Schlueter, J.A. Superconductor-insulator phase separation induced by rapid cooling of κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 2008, 77, 060503:1–060503:4.
[24]
Andraka, B.; Kim, J.S.; Stewart, G.R.; Stewart, G.R.; Wang, H.H.; Williams, J.M. Specific heat in high magnetic field of κ-di[bis(ethylenedithio)tetrathiafulvalene]-di(thiocyano)cuprate [κ-(ET)2Cu(NCS)2]: Evidence for strong-coupling superconductivity. Phys. Rev. B 1989, 40, 11345–11347.
[25]
Yamashita, S.; Ishikawa, T.; Fujisaki, T.; Naito, A.; Nakazawa, Y.; Oguni, M. Thermodynamic Behavior of the 10 K Class organic Superconductor κ-(BEDT-TTF)2Cu(NCS)2 Studied by Relaxation Calorimetry. Thermochim. Acta 2005, 431, 123–126, doi:10.1016/j.tca.2005.01.056.
[26]
Graebner, J.E.; Haddon, R.C.; Chichester, S.V.; Glarum, S.H. Specific heat of superconducting κ-(BEDT-TTF)2Cu(NCS)2 near Tc [where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene]. Phys. Rev. B 1990, 41, 4808–4810, doi:10.1103/PhysRevB.41.4808.
[27]
Andraka, B.; Jee, C.S.; Kim, J.S.; Stewart, G.R.; Calson, K.D.; Wang, H.H.; Crouch, A.V.S.; Kini, A.M.; Williams, J.M. Specific heat of the high Tc organic superconductor κ-(ET)2Cu[N(CN)2]Br. Solid State Commun. 1991, 79, 57–59, doi:10.1016/0038-1098(91)90479-F.
[28]
Elsinger, H.; Wosnizta, J.; Wanka, S.; Hagel, J.; Schweitzer, D.; Strunz, W. κ-(BEDT-TTF)2Cu[N(CN)2]Br: A Fully Gapped Strong-Coupling Superconductor. Phys. Rev. Lett. 2000, 84, 6098–6101, doi:10.1103/PhysRevLett.84.6098.
[29]
Müller, J.; Lang, M.; Helfrich, R.; Steglich, F.; Sasaki, T. High-resolution ac-calorimetry studies of the quasi-two-dimensional organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. B 2002, 65, 140509:1–140509:4.
[30]
Nakazawa, Y.; Kanoda, K. Low-temperature specific heat of κ-(BEDT-TTF)2Cu[N(CN)2]Br in the superconducting state. Phys. Rev. B 1997, 55, R8670–R8673, doi:10.1103/PhysRevB.55.R8670.
[31]
Nakazawa, Y.; Kanoda, K. Thermodynamic property of organic superconductor κ-(BEDT-TTF)2X [C = Cu(NCS)2, Cu[N(CN)2]Br]. Physica C 1997, 282–287, 1897–1898, doi:10.1016/S0921-4534(97)01134-9.
[32]
Kanoda, K.; Miyagawa, K.; Kawamoto, A.; Nakazawa, Y. NMR relaxation rate in the superconducting state of the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1996, 54, 76–79.
[33]
Mayaffre, H.; Wzietek, P.; Lenoir, C.; Jerome, D.; Batail, P. 13C-NMR Study of a Quasi-Two-Dimensional Organic Superconductor κ-(ET)2Cu[N(CN)2]Br. Europhys. Lett. 1994, 28, 205–210, doi:10.1209/0295-5075/28/3/009.
[34]
De Soto, S.M.; Slichter, C.P.; Kini, A.M.; Wang, H.H.; Geiser, U.; Williams, J.M. 13C-NMR studies of the normal and superconducting states of the organic superconductor κ-(ET)2Cu[N(CN)2]Br. Phys. Rev. B 1995, 52, 10364–10368.
[35]
Izawa, K.; Yamaguchi, H.; Sasaki, T.; Matsuda, Y. Superconducting Gap Structure of κ-(BEDT-TTF)2Cu(NCS)2 Probed by Thermal Conductivity Tensor. Phys. Rev. Lett. 2002, 88, 027002:1–027002:4.
[36]
Harshman, D.R.; Fiory, A.T.; Haddon, R.C.; Kaplan, M.L.; Pfiz, T.; Koster, E.; Shinkoda, I.; Williams, D.Ll. Magnetic Penetration Depth and Fluxon-Line Dynamics in the Organic Superconductor κ-[BEDT-TTF]2Cu[NCS]2. Phys. Rev. B 1994, 49, 12990–12997.
[37]
Le, L.P.; Luke, G.M.; Sternlieb, B.J.; Wu, W.D.; Uemura, Y.J.; Brewer, J.H.; Riseman, T.M.; Stronach, C.E.; Saito, G.; Yamochi, H.; et al. Muon-Spin-Relaxation Measurements of Magnetic Penetration Depth in Organic Superconductors (BEDT-TTF)2-X:X=Cu(NCS)2 and Cu[N(CN)2]Br. Phys. Rev. Lett. 1992, 68, 1023–1926.
[38]
Malone, L.; Taylor, O.J.; Schlueter, J.A.; Carrington, A. Location of gap nodes in the organic superconductors κ-(ET)2Cu(NCS)2 and κ-(ET)2Cu[N(CN)2]Br determined by magnetocalorimetry. Phys. Rev. B 2010, 82, 014522:1–014522:5.
[39]
Lortz, R.; Wang, Y.; Demuer, A.; Bottger, P.H.M.; Bergk, B.; Zwicknagl, G.; Nakazawa, Y.; Wosnizta, J. Calorimetric Evidence for a Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett. 2007, 99, 187002:1–187002:4.
[40]
Berg, B.; Demuer, A.; Sheikin, I.; Wang, Y.; Wosnizta, J.; Nakazawa, Y.; Lortz, R. Location of gap nodes in the organic superconductors κ-(ET)2Cu(NCS)2 and κ-(ET)2Cu[N(CN)2]Br determined by magnetocalorimetry. Phys. Rev. B 2010, 82, 014522:1–014522:5.
[41]
Mori, H.; Hirabayashi, I.; Tanaka, S.; Mori, T.; Inokuchi, H. A new ambient-pressure organic superonductor, κ-(BEDT-TTF)2Ag(CN)2H2O (TC = 5.0 K). Solid State Commun 1990, 76, 35–37, doi:10.1016/0038-1098(90)90293-K.
[42]
Ishikawa, T.; Yamashita, S.; Nakazawa, Y.; Kawamoto, A.; Oguni, M. Calorimetric Study of Molecular Superconductor κ-(BEDT-TTF)2Ag(CN)22H2O which Contains Water in the Anion Layers. J. Therm. Anal. Calorim. 2008, 92, 435–438, doi:10.1007/s10973-007-8966-y.
[43]
Ishikawa, T.; Nakazawa, Y.; Yamashita, S.; Oguni, M.; Saito, K.; Takimiya, K.; Otsubo, T. Thermodynamic Study of an Incommensurate Organic Superconductor (MDT-TSF)(AuI2)0.436. J. Phys. Soc. Jpn. 2006, 75, 074606:1–074606:4.
[44]
Wosnitza, J.; Liu, X.; Schweitzer, D.; Keller, H.J. Specific heat of the organic superconductor κ-(BEDT-TTF)2I3. Phys. Rev. B 1994, 50, 12747–12751.
[45]
Lyubovskaya, R.N.; Zhilyaeva, E.I.; Pesotskii, S.I.; Lyubovskii, R.B.; Atovmyan, L.O.; D’yachenko, O.A.; Takhirov, T.G. Superconductivity at the atmospheric pressure in the (ET)4H2.89Br8 at Tc = 4.3 K and anisotropy of critical fields. JETP Lett. 1987, 46, 188–191.
[46]
Naito, A.; Nakazawa, Y.; Saito, K.; Taniguchi, H.; Kanoda, K.; Sorai, M. Anomalous enhancement of electronic heat capacity in the organic conductors κ-(BEDT-TTF)4Hg3?δX8 (X = Br,Cl). Phys. Rev. B 2005, 71, 054514:1–054514:4.
[47]
Naito, A.; Nakazawa, Y.; Saito, K.; Taniguchi, H.; Kanoda, K.; Sorai, M. Low-temperature heat capacity measurements of κ-(BEDT-TTF)4Hg2.89Br8. Physica C 2003, 388, 595–596, doi:10.1016/S0921-4534(02)02757-0.
[48]
Kurosaki, Y.; Furuta, A.; Taniguchi, H.; Miyagawa, K.; Kanoda, K. Inhomogeneous spin state in the organic conductor κ-(BEDT-TTF)4Hg2.78Cl8. Physica B 2009, 404, 3138–3140.
[49]
Yamashita, S.; Naito, A.; Nakazawa, Y.; Saito, K.; Taniguchi, H.; Kanoda, K.; Oguni, M. Drastic Cooling Rate Dependence of Thermal Anomaly Associated with the Superconducting Transition in κ-(BEDT-TTF)4Hg3?δBr8. J. Therm. Anal. Calorim. 2005, 81, 591–594, doi:10.1007/s10973-005-0829-9.
[50]
Kubota, O.; Nakazawa, Y. Construction of a low-temperature thermodynamic measurement system for single crystal of molecular compounds under pressures. Rev. Sci. Instrum. 2008, 79, 053901:1–053901:6.
[51]
Tokoro, N.; Kubota, O.; Yamashita, S.; Kawamoto, A.; Nakazawa, Y. Thermodynamic Study of κ-(BEDT-TTF)2Ag(CN)2H2O under Pressures and with Magnetic Fields. J. Phys. Conf. Series 2008, 132, 012010:1–012010:8.
[52]
Tokoro, N.; Fukuoka, S.; Kubota, O.; Nakazawa, Y. Low-temperature heat capacity measurements of κ-type organic superconductors under pressure. PhysicaB 2010, 405, S273–S276.