全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2012 

Detection of Dissolved Lactose Employing an Optofluidic Micro-System

DOI: 10.3390/diagnostics2040097

Keywords: lactose detection, non-invasive, label-free, optofluidics, partial total internal reflection

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, a novel optofluidic sensor principle is employed for a non-invasive and label-free characterization of lactose containing liquid samples. Especially for medicine and food industry, a simple, fast and accurate determination of the amount of lactose in various products is highly desirable. The presented system exploits the impact of dissolved molecules on the refractive index for sample characterization. On the optofluidic chip, a microfluidic channel filled with the analyte is hit by slightly diverging laser light. The center incident angle of the beam on-chip is set close to the critical angle for total internal reflection. Both the reflected and the transmitted light signals are recorded at the solid-liquid interface. The ratio of those two signals is then used as representative value for the analyte. Using this principle, lactose containing samples were differentiated based on their concentrations at a step size of 10 mmol/L. The use of the signals ratio instead of a single signal approach improves the stability of the system significantly, allowing for higher resolutions to be achieved. Furthermore, the fabrication of the devices in PDMS ensures biocompatibility and provides low absorbance of light in the visible range.

References

[1]  Weber, E.; Rosenauer, M.; Buchegger, W.; Verhaert, P.D.E.M.; Vellekoop, M.J. Fluorescence Based On-Chip Cell Analysis Applying Standard Viability Kits. In Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2011), Seattle, WA, USA, 2-6 October 2011; pp. 1716–1718.
[2]  Rosenauer, M.; Buchegger, W.; Finoulst, I.; Verhaert, P.; Vellekoop, M. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes. Microfluid. Nanofluid. 2010, 10, 761–771.
[3]  Weber, E.; Puchberger-Enengl, D.; Vellekoop, M.J. In-Line Characterization of Micro-Droplets Based on Partial Light Reflection at the Solid-Liquid Interface. In Proceedings of the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM2012), Rio Grande, PR, USA, 8-12 July 2012.
[4]  Shen, Z.; Zou, Y.; Chen, X. Characterization of microdroplets using optofluidic signals. Lab Chip 2012, 12, 3816–3820, doi:10.1039/c2lc40758b.
[5]  Nguyen, N.T.; Lassemono, S.; Chollet, F.A. Optical detection for droplet size control in microfluidic droplet-based analysis systems. Sens. Actuator. B Chem. 2006, 117, 431–436, doi:10.1016/j.snb.2005.12.010.
[6]  Chao, K.S.; Lin, T.Y.; Yang, R.J. Two optofluidic devices for the refractive index measurement of small volume of fluids. Microfluid. Nanofluid. 2012, 12, 697–704, doi:10.1007/s10404-011-0915-1.
[7]  Lapsley, M.I.; Chaing, I.K.; Zheng, Y.B.; Ding, X.; Mao, X.; Huang, T.J. A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection. Lab Chip 2011, 11, 1795–1800, doi:10.1039/c0lc00707b.
[8]  Seow, Y.C.; Lim, S.P.; Khoo, B.C.; Lee, H.P. An optofluidic refractive index sensor based on partial refraction. Sens. Actuator. B Chem. 2010, 147, 607–611, doi:10.1016/j.snb.2010.03.076.
[9]  Lide, D. CRC Handbook of Chemistry and Physics, 88th ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 54–55. Chapter 8.
[10]  Weber, E.; Vellekoop, M.J. Optofluidic micro-sensors for the determination of liquid concentrations. Lab Chip 2012, 12, 3754–3759, doi:10.1039/c2lc40616k.
[11]  McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35, 491–499, doi:10.1021/ar010110q.
[12]  Ng, J.M.K.; Gitlin, I.; Stroock, A.D.; Whitesides, G.M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002, 23, 3461–3473, doi:10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8.
[13]  Vulto, P.; Glade, N.; Altomare, L.; Bablet, J.; Tin, L.D.; Medoro, G.; Chartier, I.; Manaresi, N.; Tartagni, M.; Guerrieri, R. Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 2005, 5, 158–162, doi:10.1039/b411885e.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133