全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Probabilistic Two-dimensional Principal Component Analysis
概率二维主分量分析

Keywords: Principal component analysis(PCA),two-dimensional principal component analysis(2DPCA),expectationmaximization(EM)algorithm,missing data
主分量分析
,二维主分量分析,期望最大化算法,缺失数据

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two-dimensional principal component analysis(2DPCA)is an approach to feature extraction and dimen- sionality reduction for an image represented straightforward as a matrix.In this paper,a probabilistic model for 2DPCA, called P2DPCA,is proposed.First,the principal components(vectors)are derived through maximum-likelihood estima- tion of parameters in the generative probabilistic model.Then,due to dealing properly with missing data,we present an expectation-maximization(EM)algorithm for estimating the parameters of the model and principal components.The application to cluster face images using mixtures of P2DPCA models shows that P2DPCA model can be a tool for density-estimation of image matrix.Experimental results on face image reconstruction with missing data illustrate the effectiveness of the model and the EM iterative algorithm.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133