全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hierarchical Optimization Identification of LTI State-space Systems by Projected Gradient Search
基于正交梯度搜索的动态系统递阶优化辨识

Keywords: System identification,parameter estimation,Levenberg-Marquardt(L-M)algorithm,hierarchical optimization(HO),state-space models,maximum likelihood estimation
系统辨识
,参数估计,Levenberg-Marquardt(L-M)算法,递阶优化,状态空间模型,极大似然估计,正交,梯度搜索,动态系统,优化辨识,Search,Gradient,Systems,Identification,Optimization,数值稳定性,抗噪能力,收敛速度,梯度方法,仿真实验,蒙特卡罗,步长,最佳,计算,一维,优化方向

Full-Text   Cite this paper   Add to My Lib

Abstract:

A hierarchical optimization method for the identifi- cation of LTI state-space systems is proposed based on projected gradient search.The system parameters are determined by op- timizing an output-error cost function.To deal with the non- uniqueness of the fully parameterized state-space system,a pro- jected gradient search algorithm is presented by restricting the update of the parameters to the tangent space to the manifold of observationally equivalent state-space systems.The sufficient condition to employ L-M algorithm for optimizing parameters is also introduced.The proposed hierarchical optimization identi- fication method includes two steps:First,the parameter search direction is determined by the proposed adaptive L-M projected gradient approach;Second,the optimum step size is computed according to a line search method.Numerical simulation studies show that the proposed algorithm offers improved performance, such as faster convergence speed and better numerical stability, over existing EM and DDLC methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133