全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Interactive Video Retrieval Framework Using Semantic Matching
基于语义匹配的交互式视频检索框架

Keywords: Semantic-matching histogram (SMH),unsupervised learning-based retrieval,semantic-based relevance feedback (SBRF)
语义匹配直方图
,基于非临督学习的检索机制,基于语义的分支反馈

Full-Text   Cite this paper   Add to My Lib

Abstract:

Content-based video retrieval (CBVR) has attracted increasing interest in recent years.In this paper,we propose a new interactive video retrieval framework using semantic matching.The main contributions are three-fold:1) We define a novel high-level feature named semantic-matching histogram (SMH) to reflect videos' semantic information. 2) We set up an unsupervised learning-based retrieval mechanism using the dominant set clustering for the sake of low on- line complexity and high retrieval efficiency.3) We establish a new interactive mechanism called semantic-based relevance feedback (SBRF) working together with SMHs to improve retrieval performances.Experimental results on a database of sports videos show the effectiveness and efficiency of the proposed framework.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133