全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Computers  2012 

Energy Management in Industrial Plants

DOI: 10.3390/computers1010024

Keywords: sensor networks, routing protocols, middleware, monitoring tool

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN) to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

References

[1]  Ruihua, Z.; Yumei, D.; Liu, Y. New Challenges to Power System Planning and Operation of Smart Grid Development in China. In Proceedings of the Power System Technology (POWERCON), 2010 International Conference on, Hangzhou, China, 24–28 October 2010; pp. 1–8.
[2]  Sensing, A.; Bose, A.; Witting, W. Power System Design: Basis for Efficient Smart Grid Initiatives. In Proceedings of the SmartGrids for Distribution, 2008. IET-CIRED. CIRED Seminar, Frankfurt, Germany, 23–24 June 2008; p. 1.
[3]  Li, F.; Qiao, W.; Sun, H.; Wan, H.; Wang, J.; Xia, Y.; Xu, Z.; Zhang, P. Smart transmission grid: Vision and framework. Smart Grid, IEEE Trans. 2010, 1, 168–177.
[4]  Han, D.M.; Lim, J.H. Design and implementation of smart home energy management systems based on zigbee. Consum. Electron. IEEE Trans. 2010, 56, 1417–1425, doi:10.1109/TCE.2010.5606278.
[5]  Estrin, D.; Culler, D.; Pister, K.; Sukhatme, G. Connecting the physical world with pervasive networks. IEEE Pervasive Comput. 2002, 1, 59–69.
[6]  Yuan, L.; Qu, G. Design Space Exploration for Energy-Efficient Secure Sensor Network. In Proceedings of the ASAP ’02: Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors, San Jose, CA, USA, 17-19 July 2002; IEEE Computer Society: Washington, DC, USA, 2002; pp. 88–97.
[7]  Mainwaring, A.; Culler, D.; Polastre, J.; Szewczyk, R.; Anderson, J. Wireless Sensor Networks for Habitat Monitoring. In Proceedings of the WSNA ’02: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, Georgia, USA, 28 September 2002; ACM Press: New York, NY, USA, 2002; pp. 88–97.
[8]  Gutierrez, J.; Durocher, D.; Lu, B.; Habetler, T. Applying Wireless Sensor Networks in Industrial Plant Energy Evaluation and Planning Systems. In Proceedings of the Pulp and Paper Industry Technical Conference, 2006. Conference Record of Annual, Appleton, WI, USA, 18–23 June 2006; pp. 1–7.
[9]  Lu, B.; Wu, L.; Habetler, T.; Harley, R.; Gutierrez, J. On the Application of Wireless Sensor Networks in Condition Monitoring and Energy Usage Evaluation for Electric Machines. In Proceedings of the Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, Atlanta, GA, USA, 6–10 November 2005; p. 6.
[10]  Paone, M.; Paladina, L.; Bruneo, D.; Puliafito, A. A Swarm-based Routing Protocol forWireless Sensor Networks. In Proceedings of the Network Computing and Applications, 2007. NCA 2007. Sixth IEEE International Symposium on, Cambridge, MA, USA, 12–14 July 2007; pp. 265–268.
[11]  Bruneo, D.; Scarpa, M.; Bobbio, A.; Cerotti, D.; Gribaudo, M. Analytical Modeling of Swarm Intelligence in Wireless Sensor Networks Through Markovian Agents. In Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, Pisa, Italy, 20–22 October 2009; pp. 52:1–52:10. VALUETOOLS ’09.
[12]  Bruneo, D.; Scarpa, M.; Bobbio, A.; Cerotti, D.; Gribaudo, M. Adaptive Swarm Intelligence Routing Algorithms for WSN in a Changing Environment. In Proceedings of the Sensors, 2010 IEEE, Kona, HI, USA, 1–4 November 2010; pp. 1813–1818.
[13]  Bruneo, D.; Scarpa, M.; Bobbio, A.; Cerotti, D.; Gribaudo, M. Markovian agent modeling swarm intelligence algorithms in wireless sensor networks. Perform. Eval. 2012, 69, 135–149, doi:10.1016/j.peva.2010.11.007.
[14]  Bruneo, D.; Puliafito, A.; Scarpa, M.; Zaia, A. Mobile Middleware in Enterprise Systems. In Handbook of Enterprise Integration; Auerbach Publications: New York, NY, USA, 2009; pp. 115–132.
[15]  Ghayal, A.; Khan, Z.; Moona, R. SmartRF-A Flexible and Light-Weight RFID Middleware. In Proceedings of the 2008 IEEE International Conference on e-Business Engineering, Xi’an, China, 22–24 October 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 317–324.
[16]  Hsu, C.C.; Mei, H.; Lee, C.S.; Lee, D.G. An Intelligent High Available RFID Middleware. In Proceedings of the Machine Learning and Cybernetics, 2008 International Conference on, Kunming, China, 12–15 July 2008; Volume 6, pp. 3166–3171.
[17]  Wang, W.; Sung, J.; Kim, D. Complex Event Processing in EPC Sensor Network Middleware for Both RFID and WSN. In Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing, Orlando, FL, USA, 5–7 May 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 165–169.
[18]  Puliafito, A.; Cucinotta, A.; Minnolo, A.L.; Zaia, A. Making the Internet of Things a Reality: The WhereX Solution. In The Internet of Things; Springer: New York, NY, USA, 2010; pp. 99–108.
[19]  Hu, W.; Ye, W.; Huang, Y.; Zhang, S. Complex Event Processing in RFID Middleware: A Three Layer Perspective. In Convergence Information Technology, International Conference on, Busan, Korea, 11–13 November 2008; Volume 1, pp. 1121–1125.
[20]  Foster, I. Service-oriented science. Science 2005, 308, 814–817, doi:10.1126/science.1110411.
[21]  Reference Model for Service Oriented Architecture 1.0. Website, 2006.
[22]  Kanoc, T. Mobile middleware: The next frontier in enterprise application integration, 1999.
[23]  Pope, A.L. The CORBA Reference Guide: Understanding the Common Object Request Broker Architecture; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1998.
[24]  Box, D. Essential COM, 1st ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1997.
[25]  Munteanu, D.S. Inc. Java Remote Method Invocation Specification. In Proceedings of ACL2006, Santa Cruz, California, USA, 24–27 June 1996.
[26]  Gilman, L.; Schreiber, R. Distributed Computing with IBM MQSeries, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996.
[27]  Weijie, C.; Weiping, L. Study of Integrating RFID Middleware with Enterprise Applications Based on SOA. In Proceedings of the Wireless Communications, Networking and Mobile Computing, 2008. WiCOM ’08. 4th International Conference on, Dalian, China, 12–14 October 2008; pp. 1–4.
[28]  Bruneo, D.; Distefano, S.; Longo, F.; Puliafito, A.; Scarpa, M. Evaluating wireless sensor node longevity through Markovian techniques. Comput. Netw. 2012, 56, 521–532, doi:10.1016/j.comnet.2011.10.003.
[29]  Bruneo, D.; Puliafito, A.; Scarpa, M. Energy control in dependable wireless sensor networks: A modelling perspective. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 2011, 225, 424–434.
[30]  Bruneo, D.; Puliafito, A.; Scarpa, M. Dependability Analysis of Wireless Sensor Networks with Active-Sleep Cycles and Redundant Nodes. In Proceedings of the Proceedings of the First Workshop on DYnamic Aspects in DEpendability Models for Fault-Tolerant Systems, Valencia, Spain, 27 April 2010; ACM: New York, NY, USA, 2010; pp. 25–30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133