全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2012 

Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE) H2 Storage Program: Trends toward Future Development

DOI: 10.3390/cryst2020413

Keywords: hydrogen storage, metal hydrides, chemical hydrogen storage, review, applications, intermetallic compounds, complex hydrides, PEM fuel cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG) emissions. However, conventional methods of storing H 2 via high-pressure or liquid H 2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H 2 uptake and release. Therefore, the US Department of Energy (DOE) initiated three Centers of Excellence focused on developing H 2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H 2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC) applications.

References

[1]  DOE. Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cell Technologies Program Multi-year Research, Development and Demonstration Plan: Planned Program Activities for 2005–2015. Available online: http://www1.eere.energy.gov/hydrogenandfuelcells/ mypp/index.html (accessed on 4 May 2012).
[2]  Ahluwalia, R.K.; Hua, T.Q.; Peng, J.-K. Fuel cycle efficiencies of different automotive on-board hydrogen storage options. Int. J. Hydrog. Energy 2007, 32, 3592–3602, doi:10.1016/j.ijhydene.2007.03.021.
[3]  Ahluwalia, R.; Hua, T.; Peng, J.-K.; Kumar, R. System Level Analysis of Hydrogen Storage Options. Proceedings of the 2008 U.S. DOE Hydrogen Program Annual Merit Review, Arlington, VA, USA, 9–13 June 2008; Available online: http://www.hydrogen.energy.gov/ pdfs/review08/st_2_ahluwalia.pdf (accessed on 4 May 2012).
[4]  Ahluwalia, R.K.; Hua, T.Q.; Peng, J.-K. On-board and off-board performance of hydrogen storage options for light-duty vehicles. Int. J. Hydrog. Energy 2011, 37, 2891–2910.
[5]  US DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles. Available online: http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf (accessed on 4 May 2012).
[6]  Bourlinos, A.B.; Steriotis, T.A.; Karakassides, M.; Sanakis, Y.; Tzitzios, V.; Trapalis, C.; Kouvelos, E.; Stubos, A. Synthesis, characterization and gas sorption properties of a molecularly-derived graphite oxide-like foam. Carbon 2007, 45, 852–857, doi:10.1016/j.carbon.2006.11.008.
[7]  Miller, M.A.; Page, R. National Testing Laboratory for Solid-State Hydrogen Storage Technologies. Proceedings of the 2008 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 9–13 June 2008; Available online: http://www.hydrogen.energy.gov/ pdfs/review08/st_28_miller.pdf (accessed 4 May 2012).
[8]  Miller, M.A.; Page, R. National Testing Laboratory for Solid-State Hydrogen Storage Technologies. Proceedings of the 2009 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 18–22 May 2009; Available online: http://www.hydrogen.energy.gov/ pdfs/review09/stp_45_miller.pdf (accessed 4 May 2012).
[9]  Van Vancht, J.H.N.; Kuijpers, F.A.; Bruning, H.C.A.M. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res. Rep. 1970, 25, 133–146.
[10]  Bogdanovic, B.; Schwickardi, M. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 1997, 253–254, 1–9.
[11]  Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The U.S. department of energy’s national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 2007, 120, 246–256, doi:10.1016/j.cattod.2006.09.022.
[12]  Konoplev, V.N. Synthesis of magnesium tetrahydroborate. Zhurnal Neorganicheskoi Khimii 1980, 25, 1737–1740.
[13]  Soloveichik, G.L.; Gao, Y.; Rijssenbeek, J.; Andrus, M.; Kniajanski, S.; Bowman, J., R.C.; Hwang, S.-J.; Zhao, J.-C. Magnesium borohydride as a hydrogen storage material: Properties and dehydrogenation pathway of unsolvated Mg(BH4)2. Int. J. Hydrog. Energy 2009, 34, 916–928, doi:10.1016/j.ijhydene.2008.11.016.
[14]  Zhao, J.-C.; Andrus, M.; Cui, J.; Gao, Y.; Kniajanski, S.; Lemmon, J.; Raber, T.; Rijssenbeek, J.; Rubinsztajn, G.; Soloveichik, G.L. Lightweight Intermetallics for Hydrogen Storage. Proceedings of the 2007 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 14–18 May 2007; Available online: http://www.hydrogen.energy.gov/pdfs/review07/ st_16_zhao.pdf (accessed on 4 May 2012).
[15]  Zhao, J.-C.; Cui, J.; Gao, Y.; Kniajanski, S.; Lemmon, J.; Raber, T.; Rijssenbeek, J.; Rubinsztajn, G.; Soloveichik, G.L. Lightweight Intermetallics for Hydrogen Storage. Proceedings of the 2008 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 9–13 June 2008; Available online: http://www.hydrogen.energy.gov/pdfs/review08/stp_22_zhao.pdf (accessed on 4 May 2012).
[16]  Liu, P.; Vajo, J. Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/ pdfs/review10/st065_liu_2010_p_web.pdf (accessed on 4 May 2012).
[17]  Jensen, C.; McGrady, S. Fundamental Studies of Advanced, High-Capacity Reversible Metal Hydrides. Proceedings of the 2009 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 18–22 May 2009; Available online: http://www.hydrogen.energy.gov/ pdfs/review09/st_07_jensen.pdf (accessed on 4 May 20112).
[18]  Klebanoff, L.; Keller, J. 5-Year Review of Metal Hydride Center of Excellence. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/st029_klebanoff_ 2010_o_web.pdf (accessed on 4 May 2012).
[19]  Graetz, J.; Wegrzyn, J.; Johnson, J.K.; Celebi, Y.; Zhou, W.M.; Reilly, J. Aluminum Hydride Regeneration. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/ pdfs/review10/st034_graetz_2010_o_web.pdf (accessed on 4 May 2012).
[20]  Graetz, J.; Reilly, J.J. Kinetically stabilized hydrogen storage materials. Scr. Mater. 2007, 56, 835–839, doi:10.1016/j.scriptamat.2007.01.007.
[21]  Bogdanovic, B.; Brand, R.A.; Marjanovic, A.; Schwickardi, M.; Tolle, J. Metal doped sodium aluminum hydrides as potential new hydrogen storage materials. J. Alloys Comp. 2000, 302, 36–58, doi:10.1016/S0925-8388(99)00663-5.
[22]  Bogdanovic, B.; Eberle, U.; Felderhoff, M.; Schuth, F. Complex aluminum hydrides. Scr. Mater. 2007, 56, 813–816, doi:10.1016/j.scriptamat.2007.01.004.
[23]  Johnson, J.K.; Sholl, D.S. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/ pdfs/review10/st064_johnson_2010_p_web.pdf (accessed on 4 May 2012).
[24]  Severa, G.; Ronnebro, E.; Jensen, C.M. Direct hydrogenation of magnesium boride to magnesium borohydride: Demonstration of >11 weight percent reversible hydrogen storage. Chem. Commun. 2010, 46, 421–423, doi:10.1039/b921205a.
[25]  Ozolins, V.; Majzoub, E.H.; Wolverton, C. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. J. Am. Chem. Soc. 2009, 131, 230–237, doi:10.1021/ja8066429. 19072157
[26]  Ronnebro, E.; Majzoub, E.H. Calcium borohydride for hydrogen storage: Catalysis and reversibility. J. Phys. Chem. B 2007, 111, 12045–12047, doi:10.1021/jp0764541.
[27]  Chen, P.; Xiong, Z.T.; Luo, J.Z.; Lin, J.Y.; Tan, K.L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–303, doi:10.1038/nature01210. 12447436
[28]  Fang, Z.Z.; Sohn, H.Y. Discovery of H2 Storage Materials: LiMgN and Ng-Ti-H. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, June 7–11 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/st062_fang _2010 _p_web.pdf (accessed on 4 May 2012).
[29]  Ott, K. 2010 Overview and Wrapup: DOE Chemical Hydrogen Storage Center of Excellence. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/ st036_ott_2010_o_web.pdf (accessed on 4 May 2012).
[30]  Nakagawa, T.; Shrestha, R.; Davis, B.; Diyabalanage, H.; Burrell, A.; Henson, N.; Semelsberger, T.; Stephens, F.; Gordon, J.; Ott, K.; et al. Chemical Hydrogen Storage R&D at Los Alamos National Laboratory. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/st040_burrell_2010_o_web.pdf (accessed on 4 May 2012).
[31]  Sneddon, L. Amineborane-Based Chemical Hydrogen Storage. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/st039_sneddon_2010_o_ web.pdf (accessed on 4 May 2012).
[32]  Burrell, A.K.; Shrestha, R.P.; Davis, B.; Diyabalanage, H.V.K.; Henson, N.; Inbody, M.; John, K.; Semelsberger, T.A.; Stephens, F.; Gordon, J.; et al. Chemical Hydrogen Storage R&D at Los Alamos National Laboratory. Proceedings of the 2009 U.S. DOE Hydrogen Program Annual Merit Review, Arlington, VA, USA, 18–22 May 2009; Available online: http://www.hydrogen.energygov/pdfs/review09/st_17_burrell.pdf (accessed on 4 May 2012).
[33]  Diyabalanage, H.V.K.; Shrestha, R.P.; Semelsberger, T.A.; Scott, B.L.; Bowden, M.E.; Davis, B.L.; Burrell, A.K. Calcium amidotrihydroborate: A hydrogen storage material. Angew. Chem. Int. Ed. 2007, 46, 8995–8997, doi:10.1002/anie.200702240.
[34]  Autrey, T. PNNL Progress as Part of the Chemical Hydrogen Storage Center of Excellence. Proceedings of the 2009 U.S. DOE Hydrogen Program Annual Merit Review, Arlington, VA, USA, 18–22 May 2009; Available online: http://www.hydrogen.energy.gov/pdfs/review09/ st_18_autrey.pdf (accessed on 4 May 2012).
[35]  Xiong, Z.; Yong, C.K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M.O.; Johnson, S.R.; Edwards, P.P.; David, W.I.F. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat. Mater. 2008, 7, 138–141, doi:10.1038/nmat2081.
[36]  Campbell, P.G.; Zakharov, L.N.; Grant, D.J.; Dixon, D.A.; Liu, S.-Y. Hydrogen storage by boron-nitrogen heterocycles: A simple route for spent fuel regeneration. J. Am. Chem. Soc. 2010, 132, 3289–3291, doi:10.1021/ja9106622. 20214402
[37]  Liu, S.-Y. Hydrogen Storage by Novel CBN Heterocycle Materials. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/st038_liu_2010_o_web.pdf (accessed on 4 May 2012).
[38]  Jensen, C.; McGrady, S. Advanced, High-Capacity Reversible Metal Hydrides. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/st031_jensen_2010 _o_web.pdf (accessed on 4 May 2012).
[39]  Allendorf, M.; Majzoub, E.H.; Stavila, V. Discovery and Development of Metal Hydrides for Reversible On-board Hydrogen Storage. Proceedings of the 2009 U.S. DOE Annual Merit Review, Washington, DC, USA, 18–22 May 2009; Available online: http://www.hydrogen. energy.gov/pdfs/review09/st_03_allendorf.pdf (accessed on 4 May 2012).
[40]  Discovery and Development of Metal Hydrides for Reversible On-board Hydrogen Storage. Proceedings of the 2010 U.S. DOE Annual Merit Review; Washington, DC, USA: 7–11 June 2010. Available online: http://www.hydrogen.energy.gov/pdfs/review10/st033_allendorf_2010_o_web.pdf (accessed on 4 May 2012).
[41]  Stavila, V.; Her, J.-H.; Zhou, W.; Hwang, S.-J.; Kim, C.; Ottley, L.A.M.; Udovic, T.J. Probing the structure, stability and hydrogen storage properties of calcium dodecahydro-closo-dodecaborate. J. Solid State Chem. 2010, 183, 1133–1140, doi:10.1016/j.jssc.2010.03.026.
[42]  Luo, W.; Ronnebro, E. Towards a viable hydrogen storage system for transportation application. J Alloys Compd. 2005, 404–406, 392–395.
[43]  Klebanoff, L.; Keller, J. Metal Hydride Center of Excellence Overview. Proceedings of the 2006 U.S. DOE Annual Merit Review, Washington, DC, USA, 16–19 May 2006; Available online: http://www.hydrogen.energy.gov/pdfs/review06/st_13_klebanoff.pdf (accessed on 4 May 2012).
[44]  Wang, J.; Liu, T.; Wu, G.; Li, W.; Liu, Y.; Araujo, C.M.; Scheicher, R.H.; Blomqvist, A.; Ahuja, R.; Xiong, Z.; et al. Potassium-modified Mg(NH2)2/2LiH system for hydrogen storage. Angew.Chem. Int. Ed. 2009, 48, 5828–5832, doi:10.1002/anie.200805264.
[45]  Lu, J.; Fang, Z.Z.; Choi, Y.J.; Sohn, H.Y. Potential of binary lithium magnesium nitride for hydrogen storage applications. J. Phys. Chem. C 2007, 111, 12129–12134, doi:10.1021/jp0733724.
[46]  Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J. Phys. Chem. B 2006, 110, 8769–8776, doi:10.1021/jp060482m.
[47]  Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Phys. Chem. Chem. Phys. 2007, 9, 1438–1452, doi:10.1039/b617927d. 17356751
[48]  Luo, W.; Wang, J.; Stewart, K.; Clift, M.; Gross, K. Li-Mg-N-H: Recent investigations and development. J. Alloys Compd. 2007, 446–447, 336–341.
[49]  Graetz, J.; Chaudhuri, S.; Lee, Y.; Vogt, T.; Reilly, J.J. Pressure-indued structural and electronic changes in alpha-AlH3. Phys. Rev. B 2006, 74, 214114–214120, doi:10.1103/PhysRevB.74.214114.
[50]  Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev. 2009, 38, 73–82, doi:10.1039/b718842k.
[51]  Ahluwalia, R.; Hua, T.; Peng, J.-K.; Kumar, R. System Level Analysis of Hydrogen Storage Options. Proceedings of the 2011 U.S. DOE Hydrogen Program Annual Merit Review, Arlington, VA, USA, 9–13 May 2011; Available online: http://www.hydrogen.energy.gov/pdfs/ review11/st001_ahluwalia_2011_o.pdf (accessed on 4 May 2012).
[52]  Zidan, R.; Garcia-Diaz, B.L.; Fewox, C.S.; Stowe, A.C.; Gray, J.R.; Harter, A.G. Aluminum hydride: A reversible material for hydrogen storage. Chem. Commun. 2009, doi:10.1039/B901878F.
[53]  Zidan, R.; Garcia-Diaz, B.L.; Martinez-Rodriguez, M.; Teprovich, J. Electrochemical Reversible Formation of Alane. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 7–11 June 2010; Available online: http://hydrogen.energy.gov/ pdfs/review10/st063_zidan_2010_p_web.pdf (accessed on 4 May 2012).
[54]  Jensen, C.M.; McGrady, S. Fundamental Studies of Advanced, High-Capacity Reversible Metal Hydrides. Proceedings of the 2009 U.S. DOE Annual Merit Review, Washington, DC, USA, 18–22 May 2009; Available online: http://www.hydrogen.energy.gov/pdfs/review09/st_ 07_jensen.pdf (accessed on 4 May 2012).
[55]  Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Firist princilples screening of destabilized metal hydrides for high capacity H2 storage using scandium. J. Alloys Compd. 2007, 446–447, 23–27.
[56]  Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Stability analysis of doped materials for reversible hydrogen storage in destabilized metal hydrides. Phys. Rev. B 2007, 76, 104108, doi:10.1103/PhysRevB.76.104108.
[57]  Wu, H.; Zhou, W.; Udovic, T.J.; Rush, J.J.; Hartman, M.R.; Bowman, J., R.C.; Vajo, J.J. Neutron vibrational spectroscopy and first-principles study of novel ternary hydrides: Li4Si2H(D) and Li4Ge2H(D): Electronic structure and lattice dynamics. Phys. Rev. B 2007, 76, 224301–224306, doi:10.1103/PhysRevB.76.224301.
[58]  Zarkevich, N.A.; Johnson, D.D. Comment on Structural stability of complex hydrides: LiBH4 revisited. Phys. Rev. Lett. 2006, 97, 119601–119605, doi:10.1103/PhysRevLett.97.119601.
[59]  Zarkevich, N.A.; Tan, T.L.; Johnson, D.D. First-priniciples prediction of phase-segregating alloy phase diagrams and a rapid design estimates of their transition temperatures. Phys. Rev. B 2007, 75, 104203–104212, doi:10.1103/PhysRevB.75.104203.
[60]  Bowman, J.R.C.; Hwang, S.-J.; Ahn, C.C.; Vajo, J.J. NMR and X-ray diffraction studies of phases in the destabilized LiH-Si system. Mater. Res. Soc. Symp. Proc. 2005, 837, N3.6.1.
[61]  Dai, B.; Rankin, R.B.; Johnson, J.K.; Allendorf, M.D.; Sholl, D.S.; Zarkevich, N.A.; Johnson, D.D. Influence of surface reactions on complex hydride reversibility. J. Phys. Chem. C 2008, 112, 18270–18279, doi:10.1021/jp807162k.
[62]  Kelly, S.T.; Clemens, B.M.; Van Atta, S.L.; Vajo, J.J.; Olson, G.L. Kinetic limitations of the Mg2Si system for reversible hydrogen storage. Nanotechnology 2009, 20, 204011–204017, doi:10.1088/0957-4484/20/20/204011.
[63]  Lu, J.; Choi, Y.J.; Fang, Z.Z.; Sohn, H.Y. Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2-MgH2 (1:1) mixture. J. Power Sources 2010, 195, 1992–1997, doi:10.1016/j.jpowsour.2009.10.032.
[64]  Lu, J.; Fang, Z.Z.; Sohn, H.Y. A new Li-Al-N-H system for reversible hydrogen storage. J. Phys. Chem. B 2006, 110, 14236–14239, doi:10.1021/jp061764p. 16854126
[65]  Lu, J.; Fang, Z.Z.; Sohn, H.Y.; Bowman, J.R.C.; Hwang, S.-J. Potential and reaction mechanism of Li-Mg-Al-N-H system for reversible hydrogen storage. J. Phys. Chem. C 2007, 111, 16686–16692, doi:10.1021/jp074814e.
[66]  Purewal, J.; Hwang, S.-J.; Bowman, J.R.C.; Ronnebro, E.; Fultz, B.; Ahn, C. Hydrogen sorption behavior of the ScH2-LiBH4 system: Experimental assessment of chemical destabilization effects. J. Phys. Chem. C 2008, 112, 8481–8485, doi:10.1021/jp800486n.
[67]  Vajo, J.J.; Li, W.; Liu, P. Thermodynamic and kinetic destabilization in LiBH4/Mg2NiH4: promise for borohydride-based hydrogen storage. Chem. Commun. 2010, 46, 6687–6689, doi:10.1039/c0cc01026j.
[68]  Vajo, J.J.; Olson, G.L. Hydrogen storage in destabilized chemical systems. Scr. Mater. 2007, 56, 829–834, doi:10.1016/j.scriptamat.2007.01.002.
[69]  Vajo, J.J.; Salguero, T.T.; Gross, A.F.; Skeith, S.L.; Olson, G.L. Destabilization strategies and kinetics challenges in light metal hydride systems. J. Alloys Compd. 2007, 446–447, 409–414.
[70]  Vajo, J.J.; Skeith, S.L. Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 2005, 109, 3719–3722, doi:10.1021/jp040769o.
[71]  Wang, L.-L.; Graham, D.D.; Robertson, I.M.; Johnson, D.D. On the reversibility of hydrogen-storage reactions in Ca(BH4)2: Characterization via experiment and theory. J. Phys. Chem. C 2009, 113, 20088–20096, doi:10.1021/jp906660v.
[72]  Wu, H.; Zhou, W.; Udovic, T.J.; Rush, J.J. Hydrogen storage in a novel destabilized hydride system, Ca2SiHx: Effects of amorphization. Chem. Mater. 2007, 19, 329–334, doi:10.1021/cm062274c.
[73]  Wu, H.; Zhou, W.; Udovic, T.J.; Rush, J.J. Structure and hydrogenation properties of the ternary alloys Ca2–xMgxSi (0 < x < 1). J. Alloys Compd. 2007, 446–447, 101–105.
[74]  Majzoub, E.H.; Ozolins, V. Prototype electrostatic ground state approach to predicting crystal structures of ionic compounds: Applications to hydrogen storage materials. Phys. Rev. B 2008, 77, 104111–104115, doi:10.1103/PhysRevB.77.104111.
[75]  Majzoub, E.H.; Ronnebro, E. Crystal structures of calcium borohydride: Theory and experiment. J. Phys. Chem. C 2009, 113, 3352–3358, doi:10.1021/jp8064322.
[76]  Zarkevich, N.A.; Johnson, D.D. Predicting enthalpies of molecular substances: Application to LiBH4. Phys. Rev. B 2008, 100, 040601–040604, doi:10.1103/PhysRevLett.100.040601.
[77]  Annual Progress Report for the DOE Hydrogen Program. Available online: http://www.hydrogen.energy.gov/annual_progress.html (accessed on 17 February 2012).
[78]  Holladay, J.D.; Brooks, K.P.; Ronnebro, E.; Simmons, K.L.; Weimar, M.R. 2011 Annual Progress Report for the DOE Hydrogen Program. Available online: http://www.hydrogen.energy.gov/ pdfs/progress11/iv_d_6_holladay_2011.pdf (accessed on 4 May 2012).
[79]  Baumann, J.; Baitalow, F.; Wolf, G. Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release. Thermochim. Acta 2005, 430, 9–14, doi:10.1016/j.tca.2004.12.002.
[80]  Wolf, G.; Baumann, J.; Baitalow, F.; Hoffmann, F.P. Calorimetric Process Monitoring of Thermal decomposition of B-N-H compounds. Thermochim. Acta 2000, 343, 19–25, doi:10.1016/S0040-6031(99)00365-2.
[81]  Stowe, A.C.; Shaw, W.J.; Linehan, J.C.; Schmid, B.; Autrey, T. Situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: Mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. Phys. Chem. Chem. Phys. 2007, 9, 1831–1836, doi:10.1039/b617781f. 17415495
[82]  Aardahl, C.L.; Autrey, T.; Camaioni, D.; Dubois, D.; Linehan, J.C.; Karkamkar, A.; Rassat, S.D.; Zheng, R.; Shaw, W.; Li, J.; et al. 2009 Annual Progress Report for the DOE Hydrogen Program. Available online: http://www.hydrogen.energy.gov/pdfs/progress09/iv_b_1d_autry.pdf (accessed on 4 May 2012).
[83]  Stephens, F.H.; Baker, R.T.; Matus, M.H.; Grant, D.J.; Dixon, D.A. Acid initiation of ammonia-borane dehydrogenation for hydrogen storage. Angew. Chem. Int. Ed. 2007, 46, 746–749, doi:10.1002/anie.200603285.
[84]  Himmelberger, D.W.; Yoon, C.W.; Bluhm, M.E.; Carroll, P.J.; Sneddon, L.G. Base-promoted ammonia borane hydrogen release. J. Am. Chem. Soc. 2009, 131, 14101–14110, doi:10.1021/ja905015x. 19746973
[85]  Denney, M.C.; Pons, V.; Hebden, T.J.; Keinekey, D.M.; Goldberg, K.I. Efficient catalysis of ammonia borane dehydrogenation. J. Am. Chem. Soc. 2006, 128, 12048–12049, doi:10.1021/ja062419g.
[86]  Fulton, J.L.; Linehan, J.C.; Autrey, T.; Balasubramanian, M.; Chen, Y.; Szymczak, N.K. When is a Nanoparticle a Cluster? An operando EXAFS Study of Amine BoraneDehydrocoupling by Rh4–6 Clusters. J. Am. Chem. Soc. 2007, 129, 11936–11949, doi:10.1021/ja073331l. 17824610
[87]  Sneddon, L. Amineborane-Based Chemical Hydrogen Storage. Proceedings of the 2007 U.S. DOE Hydrogen Program Annual Merit Review, Washington, DC, USA, 14–18 May 2007; Available online: http://www.hydrogen.energy.gov/pdfs/review07/st_27_sneddon.pdf (accessed on 4 May 2012).
[88]  Wright, W.R.H.; Berkeley, E.R.; Alden, L.R.; Baker, R.T.; Sneddon, L.G. Transition metal catalysed ammonia-borane dehydrogenation in ionic liquids. Chem. Commun. 2011, 47, 3177–3179, doi:10.1039/c0cc05408a.
[89]  Keaton, R.J.; Blacquiere, J.M.; Baker, R.T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc. 2007, 129, 1844–1845, doi:10.1021/ja066860i.
[90]  Shrestha, R.P.; Diyabalanage, H.V.K.; Semelsberger, T.A.; Ott, K.C.; Burrell, A.K. Catalytic dehydrogenation of ammonia borane in non-aqueous medium. Int. J. Hydrog. Energy 2009, 34, 2616–2621, doi:10.1016/j.ijhydene.2009.01.014.
[91]  Himmelberger, D.W.; Alden, L.R.; Bluhm, M.E.; Sneddon, L.G. Ammonia boran hydrogen release in ionic liquids. Inorg.Chem. 2009, 48, 9883–9889, doi:10.1021/ic901560h. 19769390
[92]  Aardahl, C.L.; Rassat, S.D. Overview of systems considerations for on-board chemical hydrogen storage. Int. J. Hydrog. Energy 2009, 34, 6676–6683, doi:10.1016/j.ijhydene.2009.06.009.
[93]  Semelsberger, T.A.; Burrell, T.; Rockward, T.; Brosha, R.; Tafoya, J.; Purdy, G.; Nakagawa, T.; Davis, B. Chemical Hydride Rate Modeling, Validation and System Demonstration. Proceedings of the 2011 U.S. DOE Hydrogen Program Annual Merit Review, Arlington, VA, USA, 9–13 May 2011; Available online: http://www.hydrogen.energy.gov/pdfs/review11/ st007_semelsberger_2011_o.pdf (accessed on 4 May 2012).
[94]  Davis, B.L.; Dixon, D.A.; Garner, E.B.; Gordon, J.C.; Matus, M.H.; Scott, B.; Stephens, F.H. Efficient regeneration of partially spent ammonia borane fuel. Angew. Chem. 2009, 121, 6944–6948, doi:10.1002/ange.200900680.
[95]  Sutton, A.D.; Burrell, A.K.; Dixon, D.A.; Garner, E.B.; Gordon, J.C.; Nakagawa, K.C.; Ott, K.C.; Robinson, J.P.; Vasiliu, M. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 2011, 331, 1426–1429, doi:10.1126/science.1199003. 21415349
[96]  Sutton, A.D.; Davis, B.L.; Bhattacharyya, K.X.; Ellis, B.D.; Gordon, J.C.; Power, P.P. Recycle of tin thiolate compounds relevant to ammonia-borane regeneration. Chem. Commun. 2010, 46, 148–149, doi:10.1039/b919383a.
[97]  Ahluwalia, R.K.; Hua, T.Q.; Peng, J.-K.; Kumar, R. 2011 Annual Progress Report for the DOE Hydrogen Program. Available online: http://www.hydrogen.energy.gov/pdfs/progress11/iv_e_2_ahluwalia_2011.pdf (accessed on 4 May 2012).
[98]  Wu, H.; Zhou, W.; Yildirim, T. Alkali and alkaline-earth metal amidoboranes: Structure, crystal chemistry, and hydrogen storage propertie. J. Am. Chem. Soc. 2008, 130, 14834–14839, doi:10.1021/ja806243f. 18847204
[99]  Xiong, Z.; Chua, Y.S.; Wu, G.; Xu, W.; Chen, P.; Shaw, W.; Karkamkar, A.; Linehan, J.C.; Smurthwaite, T.; Autrey, T. Interaction of lithium hydride and ammonia borane in THF. Chem. Commun. 2008, doi:10.1039/B812576G.
[100]  Marwitz, A.J.V.; Matus, M.H.; Zakharov, L.N.; Dixon, D.A.; Liu, S.-Y. A hybrid organic/inorganic benzene. Angew. Chem. Int. Ed. 2009, 48, 973–977, doi:10.1002/anie.200805554.
[101]  Arduengo, A.J.; Dixon, D.A. Main Group Element and Organic Chemistry for Hydrogen Storage and Activation. Proceedings of the 2010 U.S. DOE Hydrogen Program Annual Merit Review, Arlington, VA, USA, 7–11 June 2010; Available online: http://www.hydrogen.energy.gov/pdfs/review10/st060_dixon_2010_p_web.pdf (accessed on 4 May 2012).
[102]  Arduengo, A.J.; Dixon, D.A. 2009 Annual Progress Report for the DOE Hydrogen Program. Available online: http://www.hydrogen.energy.gov/pdfs/progress09/iv_b_1e_dixon.pdf (accessed on 4 May 2012).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133