全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2012 

Theory of Photoinduced Phase Transitions in Molecular Conductors: Interplay Between Correlated Electrons, Lattice Phonons and Molecular Vibrations

DOI: 10.3390/cryst2010056

Keywords: photoinduced phase transition, neutral-ionic transition, charge-order melting, metal-insulator transition

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dynamics of photoinduced phase transitions in molecular conductors are reviewed from the perspective of interplay between correlated electrons and phonons. (1) The charge-transfer complex TTF-CA shows a transition from a neutral paraelectric phase to an ionic ferroelectric phase. Lattice phonons promote this photoinduced transition by preparing short-range lattice dimerization as a precursor. Molecular vibrations stabilize the neutral phase so that the ionic phase, when realized, possesses a large ionicity and the Mott character; (2) The organic salts θ-(BEDT-TTF) 2RbZn(SCN) 4 and α-(BEDT-TTF)2I3 show transitions from a charge-ordered insulator to a metal. Lattice phonons make this photoinduced transition hard for the former salt only. Molecular vibrations interfere with intermolecular transfers of correlated electrons at an early stage; (3) The organic salt κ-(d-BEDT-TTF) 2Cu[N(CN) 2]Br shows a transition from a Mott insulator to a metal. Lattice phonons modulating intradimer transfer integrals enable photoexcitation-energy-dependent transition pathways through weakening of effective interaction and through introduction of carriers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133