The crystal structures of four salts of 1,4-diazabicyclo[2.2.2]octane (DABCO) and 5-aminotetrazole are described. Anhydrous 1:1 ( Pbca, R gt = 0.041) and 1:2 ( P, R gt = 0.038) salts form hydrogen-bonded layers of anions and cations. The monohydrate of the 1:1 compound ( P2 1/ c, R gt = 0.038) shows infinite chains of DABCO cations and an undulated layer of anions and water molecules. The octahydrate of the 3:2 compound ( P2 1/ c, R gt = 0.042) features DABCO triples and clusters of four tetrazolate ions in a network of water molecules.
References
[1]
Fujihisa, H.; Honda, K.; Obata, S.; Yamawaki, H.; Takeya, S.; Gotoh, Y.; Matsunaga, T. Crystal structure of anhydrous 5-aminotetrazole and its high-pressure behavior. CrystEngComm 2011, 13, 99–102.
[2]
Bray, D.D.; White, J.G. Refinement of the Structure of 5-Aminotetrazole Monohydrate. Acta Crystallogr. 1979, B35, 3089–3091.
[3]
Boraei, A.A.A. Acidity Constants of Some Tetrazole Compounds in Various Aqueous-Organic Solvent Media. J. Chem. Eng. Data 2001, 46, 939–943, doi:10.1021/je010031p.
[4]
Murlowska, K.; Sadlej-Sosnowska, N. Absolute Calculations of Acidity of C-Substituted Tetrazoles in Solution. J. Phys. Chem. A 2005, 109, 5590–5595, doi:10.1021/jp040388a.
[5]
Albert, A.; Goldacre, R.; Phillips, J. The Strength of Heterocyclic Bases. J. Chem. Soc. 1948, 2, 2240–2249.
[6]
Xue, H.; Gao, H.; Twamley, B.; Shreeve, J.M. Energetic Salts of 3-Nitro-1,2,4-triazole-5-one, 5-Nitroaminotetrazole, and Other Nitro-Substituted Azoles. Chem. Mater. 2007, 19, 1731–1739.
[7]
von Denffer, M.; Klap?tke, T.M.; Sabaté, C.M. Hydrates of 5-Amino-1H-tetrazolium Halogenide Salts – Starting Materials for the Synthesis of Energetic Compounds. Z. Anorg. Allg. Chem. 2008, 634, 2575–2582, doi:10.1002/zaac.200800270.
[8]
Klap?tke, T.M.; Sabaté, C.M.; Stierstorfer, J. Hydrogen-bonding Stabilization in Energetic Perchlorate Salts: 5-Amino-1H-tetrazolium Perchlorate and its Adduct with 5-Amino-1H-tetrazole. Z. Anorg. Allg. Chem. 2008, 634, 1867–1874.
[9]
Jin, C.; Ye, C.; Piekarski, C.; Twamley, B.; Shreeve, J.M. Mono and Bridged Azolium Picrates as Energetic Salts. Eur. J. Inorg. Chem. 2005, 3760–3767.
[10]
von Denffer, M.; Klap?tke, T.M.; Kramer, G.; Spiess, G.; Welch, J.M.; Heeb, G. Improved Synthesis and X-Ray Structure of 5-Aminotetrazolium Nitrate. Propellants, Explos., Pyrotech. 2005, 30, 191–195, doi:10.1002/prep.200500004.
[11]
Tao, G.-H.; Guo, Y.; Joo, Y.-H.; Twamley, B.; Shreeve, J.M. Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. J. Mater. Chem. 2008, 18, 5524–5530, doi:10.1039/b811506k.
[12]
Henry, R.A. Salts of 5-Aminotetrazole. J. Am. Chem. Soc. 1952, 74, 6303, doi:10.1021/ja01144a035.
[13]
Ernst, V.; Klap?tke, T.M.; Stierstorfer, J. Alkali Salts of 5-Aminotetrazole—Structures and Properties. Z. Anorg. Allg. Chem. 2007, 633, 879–887, doi:10.1002/zaac.200700013.
[14]
Yao, Y.-L.; Xue, L.; Che, Y.-X.; Zheng, J.-M. Syntheses, Structures, and Characterizations of Two Pairs of Cd(II)-5-Aminotetrazolate Coordination Polymers. Cryst. Growth Des. 2009, 9, 606–610, doi:10.1021/cg8009157.
[15]
Liu, D.; Huang, G.; Huang, C.; Huang, X.; Chen, J.; You, X.Z. Cadmium Coordination Polymers Constructed from in Situ Generated Amino-Tetrazole Ligand: Effect of the Conditions on the Structures and Topologies. Cryst. Growth Des. 2009, 9, 5117–5127.
[16]
Liu, D.; Huang, X.; Huang, C.; Huang, G.; Chen, J. Synthesis, crystal structures and properties of three new mixed-ligand d10 metal complexes constructed from pyridinecarboxylate and in situ generated amino-tetrazole ligand. J. Solid State Chem. 2009, 182, 1899–1906, doi:10.1016/j.jssc.2009.04.034.
Wang, T.-W.; Liu, D.-S.; Huang, C.-C.; Sui, Y.; Huang, X.-H.; Chen, J.-Z.; You, X.-Z. Syntheses, Crystal Structures, and Magnetic Properties of Two Mn(II) Coordination Polymers Based on the 5-Aminotetrazole Ligand: Effect of Sources of Ligand on Construction of Topological Networks. Cryst. Growth Des. 2010, 10, 3429–3435.
[19]
Paul, A.K.; Sanyal, U.; Natarajan, S. Use of Polyazaheterocycles in the Assembly of New Cadmium Sulfate Frameworks: Synthesis, Structure, and Properties. Cryst. Growth Des. 2010, 10, 4161–4175, doi:10.1021/cg100865v.
Laus, G.; Hummel, M.; T?bbens, D.M.; Gelbrich, T.; Kahlenberg, V.; Wurst, K.; Griesser, U.J.; Schottenberger, H. The 1:1 and 1:2 salts of 1,4-diazabicyclo[2.2.2]octane and bis(trifluoromethyl-sulfonyl)amine: thermal behaviour and polymorphism. CrystEngComm 2011, 13, 5439–5446 and literature cited.
[22]
Laus, G.; Kahlenberg, V.; Wurst, K.; L?rting, T.; Schottenberger, H. Hydrogen bonding in the perhydrate and hydrates of 1,4-diazabicyclo[2.2.2]octane (DABCO). CrystEngComm 2008, 10, 1638–1644 and literature cited, doi:10.1039/b807303a.
[23]
Quagliano, J.V.; Banerjee, A.K.; Goedken, V.L.; Vallarino, L.M. Donor Properties of Positively Charged Ligands. Pseudotetrahedral Transition Metal Complexes Containing a Monoquaternized Tertiary Diamine. J. Am. Chem. Soc. 1970, 92, 482–488.
Jayaraman, K.; Choudhury, A.; Rao, C.N.R. Sulfates of organic diamines: hydrogen-bonded structures and properties. Solid State Sci. 2002, 4, 413–422, doi:10.1016/S1293-2558(02)01269-4.
[27]
Allwood, B.L.; Moysak, P.I.; Rzepa, H.S.; Williams, D.J. A novel hydrogen-bonded complex formed by reaction between bromine and 1,4-diazabicyclo[2.2.2]octane in dichloromethane solution. J. Chem. Soc., Chem. Commun. 1985, 1127–1129.
[28]
Burla, M.C.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Polidori, G. More power for direct methods: SIR2002. Z. Kristallogr. 2002, 217, 629–635, doi:10.1524/zkri.217.12.629.20658.
[29]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.