Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333?K to 545 K. The enthalpy and entropy of hydride decomposition, ? H des = ?78.3 kJ/molH 2, ? S des = ?136.1 J/K molH 2, estimated from the Van't Hoff analysis, are in good agreement with bulk results, while the absorption thermodynamics, ? H abs = ?61.6 kJ/molH 2, ? S abs = ?110.9 J/K molH 2, appear to be substantially affected by the clamping of the film to the substrate. The clamping is negligible at high temperatures, T > 523 K, while at lower temperatures, T < 393 K, it is considerable. The hysteresis at room temperature in Mg/Ta/Pd films increases by a factor of 16 as compared to MgH 2 bulk. The hysteresis increases even further in Mg/Pd films, most likely due to the formation of a Mg-Pd alloy at the Mg/Pd interface. The stress–strain analysis of the Mg/Ta/Pd films at 300–333 K proves that the increase of the hysteresis occurs due to additional mechanical work during the (de-)hydrogenation cycle. With a proper temperature correction, our stress–strain analysis quantitatively and qualitatively explains the hysteresis behavior in thin films, as compared to bulk, over the whole temperature range.
References
[1]
Ivery, D.G.; Chittim, R.I.; Chittim, K.J.; Northwood, D.O. Metal hydrides for energy storage. J. Mater. Energy Syst. 1981, 3, 3–19.
[2]
Zaluska, A.; Zaluska, L.; Strom-Olsen, J.O. Nanocrystalline magnesium for hydrogen storage. J. Alloys Comp. 1999, 288, 217–225, doi:10.1016/S0925-8388(99)00073-0.
[3]
Klassen, T.; Oelerich, W.; Bormann, R. Nanocrystalline Mg-based hydrides: Hydrogen storage for the zero-emission vehicle. Mater. Sci. Forum 2011, 360–362, 603–608.
[4]
Sakintuna, B.; Lamari-Darkrim, F.; Hircher, M. Metal hydrides for solid hydrogen storage: A review. Int. J. Hydrogen Energ. 2007, 32, 1121–1140, doi:10.1016/j.ijhydene.2006.11.022.
[5]
Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Boesenberg, U.; Klassen, T.; Gutfleisch, O.; Bormann, R. Hydrogen storage in magnesium-based hydrides and hydride composites. Scr. Mater. 2007, 56, 841–846, doi:10.1016/j.scriptamat.2007.01.003.
[6]
Prinsipi, G.; Agresti, F.; Maddalena, A.; Russo, S.L. The problem of solid hydrogen storage. Energy 2009, 34, 2087–2091, doi:10.1016/j.energy.2008.08.027.
[7]
Jain, I.P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energ. 2010, 35, 5133–5144, doi:10.1016/j.ijhydene.2009.08.088.
[8]
Gremaud, R.; Broedersz, C.; Borsa, D.; Borgschulte, A.; Mauron, P.; Schreuders, H.; Dam, B.; Griessen, R. Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials. Adv. Mater. 2007, 19, 2813–2817.
[9]
Pivak, Y.; Schreuders, H.; Slaman, M.; Griessen, R.; Dam, B. Thermodynamics, stress release and hysteresis behavior in highly adhesive Pd-H films. Int. J. Hydrogen Energy 2011, 36, 4056–4067.
[10]
Pundt, A. Hydrogen in nano-sized metals. Adv. Eng. Mater. 2004, 6, 11–21, doi:10.1002/adem.200300557.
[11]
Stampfer, J.F.; Holley, C.E.; Suttle, J.F. The magnesium-hydride system. J. Am. Chem. Soc. 1960, 82, 3504–3508, doi:10.1021/ja01499a006.
[12]
Esayed, A.Y.; Northwood, D.O. Metal hydrides: A review of group V transition metals—Niobium, vanadium and tantalum. Int. J. Hydrogen Energ. 1992, 17, 41–52, doi:10.1016/0360-3199(92)90220-Q.
[13]
Friske, H.; Wicke, E. Magnetic susceptibility and equilibrium diagram of PdHn. Ber. Bunsenges. Phys. Chem. 1973, 77, 48–52.
[14]
Ellinger, F.H.; Holley, C.E., Jr.; McInteer, B.B.; Pavone, D.; Potter, R.M.; Staritsky, E.; Zachariasen, W.H. The preparation and some properties of magnesium hydride. J. Am. Chem. Soc. 1955, 77, 2647–2648.
[15]
Reilly, J.J.; Wiswall, R.H. The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 1968, 7, 2254–2256, doi:10.1021/ic50069a016.
[16]
Akiba, E.; Nomura, K.; Ono, S.; Minzuno, Y. Pressure-composition isotherms of Mg Ni H2 alloys. J. Less Common Met. 1982, 83, L43–L46, doi:10.1016/0022-5088(82)90284-3.
[17]
Zeng, K.; Klassen, T.; Oelerich, W.; Bormann, R. Critical assessment and thermodynamic modeling of the Mg-H system. Int. J. Hydrogen Energ. 1999, 24, 989–1004, doi:10.1016/S0360-3199(98)00132-3.
[18]
Bogdanovic, B.; Bohmhammel, K.; Christ, B.; Reiser, A.; Schlichte, K.; Vehlen, R.; Wolf, U. Thermodynamic investigation of the magnesium-hydrogen system. J. Alloys Compounds 1992, 282, 84–92.
[19]
Bohmhammel, K.; Wolf, U.; Wolf, G.; Konigsberger, E. Thermodynamic optimization of the system magnesium-hydride. Thermochim. Acta 1999, 337, 195–199, doi:10.1016/S0040-6031(99)00235-X.
[20]
Gross, K.J.; Spatz, P.; Zuttel, A.; Schlapbach, L. Mechanically milled Mg composites for hydrogen storage the transition to a steady state composition. J. Alloys Compounds 1996, 240, 206–213, doi:10.1016/0925-8388(96)02261-X.
[21]
Klose, W.; Stuke, V. Investigation of the thermodynamic equilibrium in the hydrogen-magnesium-magnesium hydride system. Int. J. Hydrogen Energ. 1995, 20, 309–316, doi:10.1016/0360-3199(94)E0046-2.
[22]
Pedersen, A.S.; Kjoller, J.; Larsen, B.; Vigeholm, B. Magnesium for hydrogen storage. Int. J. Hydrogen Energ. 1983, 8, 205–211, doi:10.1016/0360-3199(83)90066-6.
[23]
Selvam, P.; Viswanathan, B.; Swamy, C.S.; Srinivasan, V. Studies on the thermal characteristics of hydrides of Mg, Mg2Ni, Mg2Cu and Mg2Ni1?xMx (M = Fe, Co, Cu or Zn; 0 < × < 1) alloys. Int. J. Hydrogen Energ. 1988, 13, 87–94, doi:10.1016/0360-3199(88)90045-6.
[24]
Vermeulen, P.; Ledovskikh, A.; Danilov, D.; Notten, P.H.L. Thermodynamics and kinetics of the thin film magnesium-hydrogen system. Acta Mater. 2009, 57, 4967–4973, doi:10.1016/j.actamat.2009.06.058.
[25]
Krozer, A.; Kasemo, B. Hydrogen uptake by Pd-coated Mg: Absorption-decomposition isotherms and uptake kinetics. J. Less Common Metals 1990, 160, 323–342, doi:10.1016/0022-5088(90)90391-V.
[26]
Dehouche, Z.; Peretti, H.A.; Hamoudi, S.; Yoo, Y.; Belkacemi, K. Effect pf activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals. J. Alloys Compounds 2008, 455, 432–439, doi:10.1016/j.jallcom.2007.01.138.
[27]
Uchida, H.T.; Kirchheim, R.; Pundt, A. Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films. Scr. Mater. 2011, 64, 935–937, doi:10.1016/j.scriptamat.2011.01.036.
[28]
Schwartz, R.B.; Khachaturyan, A.G. Thermodynamics of open two-phase systems with coherent interfaces: Application to metal-hydrogen systems. Acta Mater. 2006, 54, 313–323, doi:10.1016/j.actamat.2005.08.044.
[29]
Manchester, F.D. Phase Diagrams of Binary Hydrogen Alloys, 3rd ed.; ASM International: Materials Park, OH, USA, 2000; pp. 1–322.
[30]
Ludwig, A.; Cao, J.; Savan, A.; Ehmann, M. High-throughput characterization of hydrogen storage materials using thin films on micromachined Si substrates. J. Alloys Compounds 2007, 446–447, 516–521.
[31]
Ludwig, A.; Cao, J.; Dam, B.; Gremaud, R. Opto-mechanical characterization of hydrogen storage properties of Mg–Ni thin film composition spreads. Appl. Surf. Sci. 2007, 254, 682–686, doi:10.1016/j.apsusc.2007.05.093.
[32]
Pasturel, M.; Slaman, M.; Schreuders, H.; Rector, J.H.; Borsa, D.M.; Dam, B.; Griessen, R. Hydrogen absorption kinetics and optical properties of Pd-doped Mg thin films. J. Appl. Phys. 2006, 100, doi:10.1063/1.2214208.
[33]
Baldi, A.; Pálsson, G.K.; Gonzalez-Silveira, M.; Schreuders, H.; Slaman, M.; Rector, J.H.; Krishnan, G.; Kooi, B.J.; Walker, G.S.; Fay, M.W.; Hj?rvarsson, B.; Wijngaarden, R.J.; Dam, B.; Griessen, R. Mg/Ti multilayers: Structural and hydrogen absorption properties. Phys. Rev. B 2010, 81, doi:10.1103/PhysRevB.81.224203.
[34]
Kalisvaart, P.; Luber, E.; Fritzche, H.; Mitlin, D. Effect of alloying magnesium with chromium and vanadium on hydrogenation kinetics studies with neutron reflectivity. Chem. Commun. 2011, 47, 4294–4296.
[35]
Simmons, G.; Wang, H. Single Crystal Elastic Constants, 2nd ed.; MIT Press: Cambridge, UK, 1971; pp. 1–370.
[36]
Courtney, T.H. Mechanical Behavior of Materials; McGraw-Hill: New York, NY, USA, 1990; pp. 1–710.
[37]
Varshni, Y.P. Temperature dependence of the elastic constants. Phys. Rev. B 1930, 2, 3952–3958, doi:10.1103/PhysRevB.2.3952.
[38]
Ledbetter, H.M. Temperature behavior of Young’s moduli of forty engineering alloys. Cryogenics 1982, 22, 653–656, doi:10.1016/0011-2275(82)90072-8.
[39]
Callister, W.D., Jr. Materials Science and Engineering an Introduction, 7th ed.; Wiley & Sons: New York, NY, USA, 2007; pp. 1–720.
[40]
Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806, doi:10.1016/j.scriptamat.2004.06.002.
[41]
Hauser, F.E.; Landon, P.R.; Dorn, J.E. Fracture of magnesium alloys at low temperatures. Trans. AIME 1956, 206, 589–594.
[42]
Ebrahimi, F.; Li, H. Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys. Scr. Mater. 2006, 55, 263–266, doi:10.1016/j.scriptamat.2006.03.053.
[43]
di Vece, M.; Grandjean, D.; van Bael, M.J.; Romero, C.P.; Wang, X.; Decoster, S.; Vantomme, A.; Lievens, P. Hydrogen-induced ostwald ripening at room temperature in a Pd nanocluster film. Phys. Rev. Lett. 2008, 100, doi:10.1103/PhysRevLett.100.236105.
[44]
Gremaud, R.; Gonzalez-Silveira, M.; Pivak, Y.; Man, S.; de Slaman, M.; Dam, B.; Griessen, R. Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes. Acta Mater. 2008, 57, 1209–1219.
[45]
Hull, D.; Bacon, D.J. Introduction to Dislocations, 4th ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 2001; pp. 1–242.
[46]
Fritzche, H.; Saoudi, M.; Haagsma, J.; Ophus, C.; Harrower, C.T.; Mitlin, D. Structural changes of thin MgAl films during hydrogen desorption. Nucl. Instr. Meth. Phys. Res. A 2009, 600, 301–304, doi:10.1016/j.nima.2008.11.113.
[47]
Baldi, A.; Gonzalez-Silveira, M.; Palmisno, V.; Dam, B.; Griessen, R. Destabilization of the Mg-H system through elastic constraints. Phys. Rev. Lett. 2009, 102, doi:10.1103/PhysRevLett.102.226102.
[48]
Baldi, A. Hydrogenography experiments on Mg1-YPdy (y = 0.02–0.3) Films. Delft University of Technology: South Holland, The Nertherlands, 2010.
[49]
Tan, X.; Harrower, C.; Amirkhiz, B.S.; Mitlin, D. Nano-scale bi-layer Pd/Ta, Pd/N and Pd/Fe catalysts for hydrogen sorption in magnesium thin films. Int. J. Hydrogen Energ. 2009, 34, 7741–7748.
[50]
Fischer, A.; Krozer, A.; Schlapbach, L. Mg/Pd and Ba/Pd interfaces with without hydrogen. Surf. Sci. 1992, 269–270, 737–742.
[51]
Yoshimura, K.; Yamada, Y.; Okada, M. Hydrogenation of Pd capped Mg thin films at room temperature. Surf. Sci. 2004, 566–568, 751–754.
[52]
Silveiro, G.; Bello, V.; Mattei, G.; Mazzoldi, P.; Battaglin, G.; Bazzanella, N.; Checchetto, R.; Moitello, A. Structural evolution of Pd-capped Mg thin films under H2 absorption and desorption cycles. Int. J. Hydrogen Energ. 2009, 34, 4817–4826.
[53]
Gremaud, R.; Slaman, M.; Schreuders, H.; Dam, B.; Griessen, R. An optical method to determine the thermodynamics of hydrogen absorption and desorption in metals. Appl. Phys. Lett. 2006, 91, doi:10.1063/1.2821376.