The new intermetallic compound Ru 11Lu 20 was obtained as black single crystals during an attempted comproportionation reaction of lutetium(III) chloride, LuCl 3, with metallic lutetium in the presence of ruthenium metal at 950 °C. Ru 11Lu 20 crystallizes with the trigonal space group R-3, Z = 6, a = 1255.1(1), c = 2973.0(4) pm, R 1 for all data: 0.0380. Ruthenium atoms center eight-, nine- and ten-vertex polyhedra of lutetium atoms which are connected in a complicated manner to a three-dimensional network.
References
[1]
Corbett, J.D. Extended metal-metal bonding in halides of the early transition metals. Acc. Chem. Res. 1981, 14, 239–246, doi:10.1021/ar00068a003.
[2]
Simon, A. Condensed metal clusters. Angew. Chem. Int. Ed. 1981, 20, 1–22, doi:10.1002/anie.198100013.
[3]
Meyer, G. Reduced halides of the rare-earth elements. Chem. Rev. 1988, 88, 93–107.
[4]
Simon, A. Extended metal-metal bonding in halides of the early transition metals. Angew. Chem. Int. Ed. 1988, 27, 159–183, doi:10.1002/anie.198801591.
[5]
Corbett, J.D. Exploratory synthesis in the solid state. Endless Wonders. Inorg. Chem. 2000, 39, 5178–5191, doi:10.1021/ic0007862.
[6]
Corbett, J.D. Exploratory synthesis of reduced rare-earth-metal halides, chalcogenides, intermetallics: New compounds, structures, and properties. J. Alloys Compd. 2006, 418, 1–20, doi:10.1016/j.jallcom.2005.08.107.
[7]
Corbett, J.D. The fascinating and diverse chemistry of polar intermetallic phases. Inorg. Chem. 2010, 49, 13–28, doi:10.1021/ic901305g.
[8]
Simon, A.; Mattausch, H.J.; Miller, G.J.; Bauhofer, W.; Kremer, R.K. Chapter 100 Metal-Rich Halides–Structure, Bonding and Properties. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Eyring, L., Eds.; Elsevier Science: Amsterdam, Netherlands, 1991; Volume 15, pp. 191–285.
[9]
Meyer, G.; Wickleder, M.S. Simple and Complex Halides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Eyring, L., Eds.; Elsevier Science: Amsterdam, Netherlands, 2000; Volume 28, pp. 53–129. Chapter 177.
[10]
Simon, A.; Mattausch, H.J.; Ryazanov, M.; Kremer, R.K. Lanthanides as d Metals. Z. Anorg. Allg. Chem. 2006, 632, 919–929, doi:10.1002/zaac.200500506.
[11]
Meyer, G. The reduction of rare-earth metal halides with unlike Metals–W?hler’s metallothermic reduction. Z. Anorg. Allg. Chem. 2007, 633, 2537–2552, doi:10.1002/zaac.200700386.
[12]
Meyer, G. Cluster complexes as anti-Werner complexes. Z. Anorg. Allg. Chem. 2008, 634, 2729–2736, doi:10.1002/zaac.200800375.
[13]
Zimmermann, S. Hochkoordinierte endohedrale übergangsmetallatome in Scandiumclustern. Ph.D. Thesis, Universit?t zu K?ln, K?ln, Germany, 2008.
[14]
Okamoto, H. Lu-Ru Phase Diagram. In ASM Alloy Phase Diagram Center; Villars, P., Okamoto, H., Cenzual, K., Eds.; ASM International, Materials Park: OH, USA, 2006. diagram No. 901545..
[15]
Norquist, P.L.; Beck, D.R.; Bilodeau, R.C.; Scheer, M.; Srawley, R.A.; Haugen, H.K. Theoretical and experimental binding energies for the d7s2 4F levels in Ru?, including calculated hyperfine structure and M1 decay rates. Phys. Rev. A 1999, 59, 1896–1902, doi:10.1103/PhysRevA.59.1896.
[16]
Davis, V.T.; Thompson, J.S. Measurement of the electron affinity of lutetium. J. Phys. B: At. Mol. Opt. Phys. 2001, 34, L433–L437, doi:10.1088/0953-4075/34/14/102.
[17]
Brühmann, M. Cluster-Komplexe der Seltenerdmetalle Gadolinium und Lutetium mit endohedralen übergangsmetall-Atomen. Ph.D. Thesis, Universit?t zu K?ln, K?ln, Germany, 2011.
[18]
Brühmann, M.; Mudring, A.-V.; Valldor, M.; Meyer, G. {Os5Lu20}I24, the first extended cluster complex of Lutetium with eight-coordinate endohedral Osmium atoms in two different environments. Eur. J. Inorg. Chem. 2011, 4083–4088.
[19]
Meyer, G. The ammonium chloride route to anhydrous rare earth chlorides—The example of YCl3. Inorg. Syntheses 1989, 25, 146–150.
[20]
X-RED 1.22, Stoe Data Reduction Program (C), Stoe & Cie GmbH, Darmstadt, Germany, 1999.
Farrugia, L.J. WINGX, A MS-Windows System of Programs for Solving, Refining and Analysing Single X-ray Diffraction Data for Small Molecules; University of Glasgow: Glasgow, Scotland, 2005.
[23]
Altomare, A.; Cascarano, G.; Giacovazzo, C.; Gualardi, A. SIR92, a program for automatic solution of crystal structures by direct methods. J. Appl. Crystallogr. 1993, 26, 343–350, doi:10.1107/S0021889892010331.
[24]
Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.
[25]
Sheldrick, G.M. SHELXS-97, Program for Structure Analysis; University of G?ttingen: G?ttingen, Germany, 1998.
[26]
Sheldrick, G.M. SHELXL-93, Program for Crystal Structure Refinement; University of G?ttingen: G?ttingen, Germany, 1993.