全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2012 

Silica-Metal Composite for Hydrogen Storage Applications

DOI: 10.3390/cryst2020690

Keywords: CMC, silica, porous matrix, metal alloy, composite, ball milling, hydrogen storage

Full-Text   Cite this paper   Add to My Lib

Abstract:

In spite of their favourable chemical characteristics, using AB5 alloys as fixed bed for hydrogen storage devices requires proper management of a number of technological aspects. Among these, the mechanical stability of metal particle grains under hydrogen cycling and the overall thermal conductivity of the material bed constitute crucial features. We developed by High Energy Ball Milling HEBM a mechanically stable silica-based AB5 composite with enhanced thermal conductivity. Here, focusing on the material’s physical-chemical properties, we report on the silica-AB5 composite development and characterization. Particularly, we studied the material consolidation process, the resulting composite morphology and the system behaviour under hydrogen loading/unloading cycling.

References

[1]  Nakamura, Y.; Sato, K.; Fujitani, S.; Nishio, K.; Ogur, K.; Uehara, I. Lattice expanding behaviour and degradation of LaNi5-based alloys. J. Alloy Compd. 1998, 267, 205–210, doi:10.1016/S0925-8388(97)00503-3.
[2]  Joubert, J.-M.; Latroche, M.; Cerny, R.; Percheron-Guégan, A.; Yvon, K. Hydrogen cycling induced degradation in LaNi5-type materials. J. Alloy Compd. 2002, 330–332, 208–214, doi:10.1016/S0925-8388(01)01640-1.
[3]  Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E. Preparation and properties of hydrogen storage alloy-copper microcapsules. J. Less Common Metals 1985, 107, 105–110, doi:10.1016/0022-5088(85)90246-2.
[4]  Watanabe, F.; Ikai, C.; Hasatanti, M.; Marumo, C. Hydration characteristics of metal hydride fixed in resin form. J. Chem. Eng. Jpn. 1992, 25, 1–5, doi:10.1252/jcej.25.1.
[5]  Uemura, Y.; Yasutsune, R.; Hatate, Y. Encapsulation of hydrogen storage alloy by polymer. J. Chem. Eng. Jpn. 1991, 24, 377–381, doi:10.1252/jcej.24.377.
[6]  Moon, S.S.; Nahm, K.S. An improvement in the properties of hydrogen storage alloy by copper microencapsulation. J. Alloy Compd. 1995, 224, 140–147, doi:10.1016/0925-8388(94)01503-1.
[7]  Akiyama, T.; Tazaki, T.; Takahashi, R.; Yagi, J. Optimization of microencapsulating and compacting conditions for hydrogen storage alloy. J. Alloy Compd. 1996, 236, 171–176, doi:10.1016/0925-8388(95)02107-8.
[8]  Heung, L.K.; Wicks, G.G.; Enz, G.L. Composition for Adsorbing Hydrogen. U.S. Patent 5,411,928/A, 2 May 1995.
[9]  Heung, L.K.; Wicks, G.G. Silica embedded metal hydrides. J. Alloy Compd. 1999, 293–295, 446–451, doi:10.1016/S0925-8388(99)00333-3.
[10]  Pentimalli, M.; Padella, F.; La Barbera, A.; Pilloni, L.; Imperi, E. A metal hydride-polymer composite for hydrogen storage applications. Energy Conv. Manag. 2009, 50, 3140–3146, doi:10.1016/j.enconman.2009.08.021.
[11]  Pentimalli, M.; Padella, F.; Pilloni, L.; Imperi, E.; Matricardi, P. AB5/ABS composite material for hydrogen storage. Int. J. Hydrogen Energy 2009, 34, 4592–4596, doi:10.1016/j.ijhydene.2008.10.013.
[12]  Pentimalli, M.; Frazzica, A.; Freni, A.; Imperi, E.; Padella, F. Metal hydride-based composite material with improved thermal conductivity and dimensional stability properties. Adv. Sci. Tech. 2010, 72, 170–175, doi:10.4028/www.scientific.net/AST.72.170.
[13]  Balaz, P. Mechanochemistry in Nanoscience and Minerals Engineering; Springer-Verlag: Berlin, Germany, 2008.
[14]  Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multi molecular layers. J. Am. Chem. Soc. 1938, 60, 309–319, doi:10.1021/ja01269a023.
[15]  Dubinin, M.M. Physical adsorption of gases and vapors in micropores. Progr. Surf. Membr. Sci. 1975, 9, 1–70.
[16]  Gregg, S.J.; Sing, K.S.W. Adsorption Surface Area and Porosity; Academic Press: London, UK, 1988.
[17]  Magini, M.; Colella, C.; Iasonna, A.; Padella, F. Power measurements during mechanical milling—II. The case of “single path cumulative solid state reaction”. Acta Mater. 1998, 46, 2841–2850, doi:10.1016/S1359-6454(98)80001-3.
[18]  Ehrburger, F. The Surface Properties of Silicas; Legrand, A.P., Ed.; John Wiley & Sons Ltd.: Berlin, Germany, 1998; pp. 83–137.
[19]  Uchida, H. Surface processes of H2 on rare earth based hydrogen storage alloys with various surface modifications. Int. J. Hydrogen Energy 1999, 24, 861–869, doi:10.1016/S0360-3199(98)00160-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133