全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2012 

Molecular and Crystal Structure of a New High Energy Density Material: Aminoguanidinium-styphnate, [H2NNHC(NH2)2]2[C6HO2(NO2)3]

DOI: 10.3390/cryst2010034

Keywords: high density energy materials, styphnates, aminoguanidinium styphnate, hydrogen bonds

Full-Text   Cite this paper   Add to My Lib

Abstract:

The title compound [H 2NNHC(NH 2) 2] 2[C 6HO 2(NO 2) 3] ( 2) was prepared in 85% yield by treatment of sodium styphnate with 2 equivalents of aminoguanidinium nitrate, followed by crystallization from aqueous solution. Compound 2 crystallizes in the triclinic space group Pī with unit cell dimensions a = 6.7224(3) ?, b = 10.7473(4) ?, c = 11.9604(5) ?, α = 113.212(4)°, β = 90.579(3)°, γ = 99.815(3)°, V = 779.68(6) ? 3, Z = 2. In the solid state structure of 2, no water of crystallization is present. Bond angles within the aromatic ring of the styphnate anion indicate a significant distortion with larger angles (122.04(18)–125.96(18) ?) at the carbons bearing the nitro groups, and smaller ones (113.30(17) and 114.07(17) ?) at the C-O ? carbon atoms. The crystal structure of 2 consists of layers formed by an extensive network of N-H ...O hydrogen bonds between NH 2 groups of the aminoguanidinium cation and the negatively charged oxygens of the styphnate anion. The layers are again interconnected by N-H ...N hydrogen bonds between neighboring aminoguanidinium cations.

References

[1]  Klap?tke, T.M. Chemistry of High-Energy Materials; Walter de Gruyter: Berlin, Germany, 2011. and references cited therein.
[2]  Nair, U.R.; Asthana, S.N.; Rao, A.S.; Gandhe, B.R. Advances in high energy materials. Defence Sci. J. 2010, 60, 137–151.
[3]  G?bel, M.; Klap?tke, T.M. Development and testing of energtic materials: the cooncept of high density based on the trinitroethyl functionality. Adv. Functional Mater. 2009, 19, 347–365, doi:10.1002/adfm.200801389.
[4]  Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P. Advances in science and technology of modern energetic materials: an overview. J. Hazardous Mater. 2008, 151, 289–305, doi:10.1016/j.jhazmat.2007.10.039.
[5]  Rice, B.M.; Byrd, E.F.C.; Mattson, W.D. Computational aspects of nitrogen-rich HEDMs. Struct. Bond. 2007, 125 (High Density Materials), 153–194, doi:10.1007/430_2006_053.
[6]  Oestmark, H.; Walin, S.; Goede, P. High energy density materials (HEDM): Overvoew, theory and synthetic efforts at FOI. Central Eur. J. Energetic Mater. 2007, 4, 83–108.
[7]  Urbanski, T. Chemie und Technologie der Explosivstoffe; DVFG: Leipzig, Germany, 1984.
[8]  Merz, V.; Zetter, G. Ueber einige Derivate des Resorcins und Orcins. Ber. Dtsch. Chem. Ges. 1879, 12, 2035–2049, doi:10.1002/cber.187901202215.
[9]  Wallace, J.S. Chemical Analysis of Firearms, Ammunition and Gunshot Residue; CRC Press: Boca Raton, FL, USA, 2008.
[10]  Bley, U.; Hagel, R.; Hoschenko, A.; Lechner, P.S. Anzündsatz. German Patent DE 10 2006 060 146 A1, 21 June 2007.
[11]  Liu, J.-W.; Zhang, J.-G.; Zhang, T.-L.; Zheng, H.; Yu, K.-B. A new hetero-bimetallic coordination polymer, cesium, and sodium complex of styphnate trihydrate [CsNa(TNR)(H2O)3]n. Struct. Chem. 2009, 20, 387–392. and references cited therein, doi:10.1007/s11224-009-9417-0.
[12]  Sheldrick, G.M. SHELXL-97 Program for Crystal Structure Refinement; Universit?t G?ttingen: G?ttingen, Germany, 1997.
[13]  Sheldrick, G.M. SHELXS-97 Program for Crystal Structure Solution; Universit?t G?ttingen: G?ttingen, Germany, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133