全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2012 

Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

DOI: 10.3390/cryst2041410

Keywords: hydrogen storage, magnesium hydride, switchable mirrors, bulk powders, thin films, electrochemical hydrogenation, gas phase hydrogenation

Full-Text   Cite this paper   Add to My Lib

Abstract:

As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g) of reversibly stored hydrogen in Mg yTM (1-y)H x (TM: Sc, Ti) has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (de)hydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YH x), followed by Mg rare earth alloy hydrides (Mg yGd (1-y)H x) and concludes with Mg transition metal hydrides (Mg yTM (1-y)H x). In-situ optical characterization of gradient thin films during (de)hydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

References

[1]  Guo, Z.X.; Shang, C.; Aguey-Zinsou, K.F. Materials challenges for hydrogen storage. J. Eur. Ceram. Soc. 2008, 28, 1467–1473, doi:10.1016/j.jeurceramsoc.2007.12.019.
[2]  Momirlan, M.; Veziroglu, T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 2005, 30, 795–802, doi:10.1016/j.ijhydene.2004.10.011.
[3]  Züttel, A.; Borgschulte, A.; Schlapbach, L. Hydrogen as A Future Energy Carrier; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; p. 5.
[4]  Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358, doi:10.1038/35104634.
[5]  Ross, D.K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum 2006, 80, 1084–1089, doi:10.1016/j.vacuum.2006.03.030.
[6]  Fukai, Y. The Metal-Hydrogen System, Basic Bulk Properties. In Springer Series in Materials Science; Springer: Berlin, Germany, 1993; pp. 55–88.
[7]  Van Vucht, J.H.N.; Kujipers, F.A.; Bruning, H.C.A.M. Reversible room-temperature absorption of large quantites of hydrogen by intermetallic compounds. Philips Res. Rep. 1970, 25, 133–140.
[8]  Selvam, P.; Viswanathan, B.; Swamy, C.S.; Srinivasan, V. Magnesium and magnesium alloy hydrides. Int. J. Hydrogen Energy 1986, 11, 169–192, doi:10.1016/0360-3199(86)90082-0.
[9]  Luz, Z.; Genossar, J.; Rudman, P.S. Identification of the diffusing atom in MgH2. J. Less Common Metals 1980, 73, 113–118, doi:10.1016/0022-5088(80)90349-5.
[10]  Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33, doi:10.1016/S1369-7021(03)00922-2.
[11]  Willems, J.J.G. Philips Research Laboratories: Eindhoven, The Netherlands, 1984; Volume 39, pp. 1–94.
[12]  Notten, P.H.L. Rechargeable Nickel-Metal hydride Batteries: A Successful New Concept. In Interstitial Intermetallic Alloys; Grandjean, F., Long, G.L., Buschow, K.H.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Volume 281, p. 151.
[13]  Platt, J.R. Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. J. Chem. Phys. 1961, 34, 862–863, doi:10.1063/1.1731686.
[14]  Deb, S.K. A Novel electrophotographic system. Appl. Opt. 1969, 8, 192–195.
[15]  Huiberts, J.N.; Griessen, R.; Rector, J.H.; Wijngaarden, R.J.; Dekker, J.P.; de Groot, D.G.; Koeman, N.J. Yttrium and lanthanum hydride films with switchable optical properties. Nature 1996, 380, 231–234, doi:10.1038/380231a0.
[16]  Griessen, R.; Giebels, I.A.M.E.; Dam, B. Optical Properties of Metal-Hydrides: Switchable Mirrors. Available online: http://www.nat.vu.nl/en/Images/ReviewSwitchableMirrors10AUG04_tcm69-85550.pdf (accessed on 28 November 2011).
[17]  Notten, P.H.L.; Kremers, M.; Griessen, R. Optical switching of Y-hydride thin film electrodes. J. Electrochem. Soc. 1996, 143, 3348–3353, doi:10.1149/1.1837210.
[18]  Van der Sluis, P.M.; Ouwerkerk, M.; Duine, P.A. Optical switching based on magnesium lanthanide alloy hydrides. Appl. Phys. Lett. 1997, 70, 3356–3358, doi:10.1063/1.119169.
[19]  Griessen, R.; van der Sluis, P. Schaltbare Spiegel-Elektronenkorrelationen in der Anwendung. Physik Unserer Zeit 2001, 32, 76–83, doi:10.1002/1521-3943(200103)32:2<76::AID-PIUZ76>3.0.CO;2-F.
[20]  Niessen, R.A.H.; Notten, P.H.L. Electrochemical hydrogen storage characteristics of thin film MgX (X=Sc,?Ti,?V,?Cr) compounds. Electrochem. Solid StateLett. 2005, 8, A534–A538, doi:10.1149/1.2012238.
[21]  Richardson, T.J.; Slack, J.L.; Armitage, R.D.; Kostecki, R.; Farangis, B.; Rubin, M.D. Switchable mirrors based on nickel-magnesium films. Appl. Phys. Lett. 2001, 78, 3047–3049, doi:10.1063/1.1371959.
[22]  Karazhanov, S.Zh.; Ulyashin, A.G.; Vajeeston, P.; Ravindran, P. Hydrides as materials for semiconductor electronics. Philos. Mag. 2008, 88, 2461–2476, doi:10.1080/14786430802360362.
[23]  Reilly, J.J.; Wiswall, R.H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 1968, 7, 2254–2256, doi:10.1021/ic50069a016.
[24]  Janot, R.; Aymard, L.; Rougier, A.; Nazri, G.; Tarascon, J. Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating. J. Mater. Res. 2003, 18, 1749–1752, doi:10.1557/JMR.2003.0241.
[25]  Zhang, S.G.; Hara, Y.; Suda, S.; Morikawa, T.; Inoue, H.; Iwakura, C. Physicochemical and electrochemical hydriding-dehydriding characteristics of amorphous MgNix (x = 1.0, 1.5, 2.0) alloys prepared by mechanical alloying. J. Solid State Electrochem. 2001, 5, 23–28, doi:10.1007/s100089900102.
[26]  Süleyman, Er.; Tiwari, D.; de Wijs, G.A.; Brocks, G. Tunable Hydrogen Storage in Magnesium-Transition Metal Compounds: First-Principles Calculations. Phys. Rev. B 2009, 79, 1–8.
[27]  Niessen, R.A.H.; Notten, P.H.L. Hydrogen storage in thin film magnesium-scandium alloys. J Alloy Compd. 2005, 404-406, 457–460, doi:10.1016/j.jallcom.2004.09.096.
[28]  Kalisvaart, W.P.; Niessen, R.A.H.; Notten, P.H.L. Electrochemical hydrogen storage in MgSc alloys: A comparative study between thin films and bulk materials. J. Alloy Compd. 2006, 417, 280–291, doi:10.1016/j.jallcom.2005.09.042.
[29]  Latroche, M.; Kalisvaart, P.; Notten, P.H.L. Crystal structure of Mg0.65Sc0.35Dx deuterides studied by X-ray and neutron powder diffraction. J. Solid State Chem. 2006, 179, 3024–3032, doi:10.1016/j.jssc.2006.05.032.
[30]  Kalisvaart, W.P.; Latroche, M.; Cuevas, F.; Notten, P.H.L. In situ neutron diffraction study on Pd-doped Mg0.65Sc0.35 electrode material. J. Solid State Chem. 2008, 181, 1141–1148, doi:10.1016/j.jssc.2008.02.013.
[31]  Conradi, M.S.; Mendenhall, M.P.; Ivancic, T.M.; Carl, E.A.; Browning, C.D.; Notten, P.H.L.; Kalisvaart, W.P.; Magusin, P.C.M.M.; Bowman, R.C., Jr.; Hwang, S.; Adolphi, N.L. NMR to determine rates of motion and structures in metal-hydrides. J. Alloy Compd. 2007, 446-447, 499–503, doi:10.1016/j.jallcom.2006.11.149.
[32]  Pauw, B.R.; Kalisvaart, W.P.; Tao, S.X.; Koper, M.T.M.; Jansen, A.P.J.; Notten, P.H.L. Cubic MgH2 stabilized by alloying with transition metals: A density functional theory study. Acta Mater. 2008, 56, 2948–2954, doi:10.1016/j.actamat.2008.02.028.
[33]  Vermeulen, P.; Niessen, R.A.H.; Notten, P.H.L. Hydrogen storage in metastable MgyTi(1?y) thin films. Electrochem. Commun. 2006, 8, 27–32, doi:10.1016/j.elecom.2005.10.013.
[34]  Vermeulen, P.; Wondergem, H.J.; Graat, P.C.J.; Borsa, D.M.; Schreuders, H.; Dam, B.; Griessen, R.; Notten, P.H.L. In situ electrochemical XRD study of (de)hydrogenation of MgyTi(100?y) thin films. J. Mater. Chem. 2008, 18, 3680–3687, doi:10.1039/b805730c.
[35]  Rousselot, S.; Bichat, M.P.; Guay, D.; Roué, L. Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling. J. Power Sources 2008, 175, 621–624, doi:10.1016/j.jpowsour.2007.09.022.
[36]  Kalisvaart, W.P.; Notten, P.H.L. Mechanical alloying and electrochemical hydrogen storage of Mg-based systems. J. Mater. Res. 2008, 23, 2179–2187, doi:10.1557/JMR.2008.0261.
[37]  Kalisvaart, W.P.; Wondergem, H.J.; Bakker, F.; Notten, P.H.L. Mg-Ti based materials for electrochemical hydrogen storage. J. Mater. Res. 2007, 22, 1640–1649, doi:10.1557/JMR.2007.0195.
[38]  Kyoi, D.; Sato, T.; R?nnebro, E.; Kitamura, N.; Ueda, A.; Ito, M.; Katsuyama, S.; Hara, S.; Noréus, D.; Sakai, T. A new ternary magnesium-titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides. J. Alloy Compd. 2004, 372, 213–217, doi:10.1016/j.jallcom.2003.08.098.
[39]  De Boer, F.R.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Niessen, A.K. Cohesion in Metals; North-Holland: Amsterdam, The Netherlands, 1988; p. 127.
[40]  Liang, G.; Schulz, R. Synthesis of Mg-Ti alloy by mechanical alloying. J. Mater. Sci. 2003, 38, 1179–1184, doi:10.1023/A:1022889100360.
[41]  Srinivasan, S.; Magusin, P.C.M.M.; Kalisvaart, W.P.; Notten, P.H.L.; Cuevas, F.; Latroche, M.; van Santen, R.A. Nanostructures of Mg0.65Ti0.35Dx studied with x-ray diffraction, neutron diffraction, and magic-angle-spinning 2H NMR spectroscopy. Phys. Rev. B 2010, 81, doi:10.1103/PhysRevB.81.054107.
[42]  Miedema, A.R.; de Chatel, P.F.; de Boer, F.R. Cohesion in Alloys-fundamentals of a Semi-empirical model. Physica B 1980, 100, 1–28.
[43]  Miedema, A.R. The electronegativity parameter for transition metals: Heat of formation and charge transfer of alloys. J. Less Common Metals 1973, 32, 117–136, doi:10.1016/0022-5088(73)90078-7.
[44]  Vermeulen, P.; van Thiel, E.F.M.J.; Notten, P.H.L. Ternary MgTiX-alloys: A promising route towards low-temperature, high-capacity, hydrogen-storage materials. Chem. Eur. J. 2007, 13, 9892–9898, doi:10.1002/chem.200700747.
[45]  Gremaud, R.; Broedersz, C.P.; Borsa, D.M.; Borgschulte, A.; Mauron, P.; Schreuders, H.; Rector, J.H.; Dam, B.; Griessen, R. Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials. Adv. Mater. 2007, 19, 2813–2817, doi:10.1002/adma.200602560.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133