全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2012 

Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications

DOI: 10.3390/diagnostics2030023

Keywords: EDC, NHS, sulfoNHS, antibody crosslinking, APTES-functionalized platforms, ELISA, SPR

Full-Text   Cite this paper   Add to My Lib

Abstract:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) alone, and in combination with N-hydroxysuccinimide (NHS) or sulfoNHS were employed for crosslinking anti-human fetuin A (HFA) antibodies on 3-aminopropyltriethoxysilane (APTES)-functionalized surface plasmon resonance (SPR) gold chip and 96-well microtiter plate. The SPR immunoassay and sandwich enzyme linked immunosorbent immunoassay (ELISA) for HFA clearly demonstrated that EDC crosslinks anti-HFA antibodies to APTES-functionalized bioanalytical platforms more efficiently than EDC/NHS and EDC/sulfoNHS at a normal pH of 7.4. Similar results were obtained by sandwich ELISAs for human Lipocalin-2 and human albumin, and direct ELISA for horseradish peroxidase. The more efficient crosslinking of antibodies by EDC to the APTES-functionalized platforms increased the cost-effectiveness and analytical performance of our immunoassays. This study will be of wide interest to researchers developing immunoassays on APTES-functionalized platforms that are being widely used in biomedical diagnostics, biosensors, lab-on-a-chip and point-of-care-devices. It stresses a critical need of an intensive investigation into the mechanisms of EDC-based amine-carboxyl coupling under various experimental conditions.

References

[1]  Vashist, S.K.; Dixit, C.K.; MacCraith, B.D.; O’Kennedy, R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 2011, 136, 4431–4436, doi:10.1039/c1an15325k.
[2]  Jung, Y.; Jeong, J.Y.; Chung, B.H. Recent advances in immobilization methods of antibodies on solid supports. Analyst 2008, 133, 697–701.
[3]  Wong, L.S.; Khan, F.; Micklefield, J. Selective covalent protein immobilization: Strategies and applications. Chem. Rev. 2009, 109, 4025–4053, doi:10.1021/cr8004668.
[4]  Hahn, W.H.; Bakry, R.; Huck, W.; Christian, R.M.; Najam-ul-Haq, M.; Bonn, K.G. Current advances in antibody immobilization on different surfaces and beads. Curr. Proteom. 2008, 5, 115–128, doi:10.2174/157016408784911918.
[5]  Hermanson, G.T. BioconjugateTechniques, 2nd ed.; Academic Press: Salt Lake, UT, USA, 2008.
[6]  Teste, B.; Vial, J.; Descroix, S.; Georgelin, T.; Siaugueb, J.M.; Petr, J.; Varenne, A.; Hennion, M.C. A chemometric approach for optimizing protein covalent immobilization on magnetic core-shell nanoparticles in view of an alternative immunoassay. Talanta 2010, 81, 1703–1710, doi:10.1016/j.talanta.2010.03.027.
[7]  Kausaite-Minkstimiene, A.; Ramanaviciene, A.; Kirlyte, J.; Ramanavicius, A. Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensors. Anal. Chem. 2010, 82, 6401–6408, doi:10.1021/ac100468k.
[8]  Lee, M.; Lee, S.; Lee, J.H.; Lim, H.W.; Seong, G.H.; Lee, E.K.; Chang, S.I.; Oh, C.H; Choo, J. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens. Bioelectron. 2011, 26, 2135–2141, doi:10.1016/j.bios.2010.09.021.
[9]  Zhang, H.; Qi, S. A rapid and sensitive chemiluminescence immunoassay based on magnetic particles for squamous cell carcinoma antigen in human serum. Clin. Chim. Acta 2011, 412, 1572–1577, doi:10.1016/j.cca.2011.05.005.
[10]  Jang, Y.; Oh, S.Y.; Park, J.K. In situ electrochemical enzyme immunoassay on a microchip with surface-functionalized poly(dimethylsiloxane) channel. Enzym. Microb. Technol. 2006, 39, 1122–1127, doi:10.1016/j.enzmictec.2006.02.020.
[11]  Lee, K.H.; Su, Y.D.; Chen, S.J.; Tseng, F.G.; Lee, G.B. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens. Bioelectron. 2007, 23, 466–472.
[12]  Song, S.Y.; Han, Y.D.; Kim, K.; Yang, S.S.; Yoon, H.C. A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosens. Bioelectron. 2011, 26, 3818–3824.
[13]  Dixit, C.K.; Vashist, S.K.; MacCraith, B.D.; O’Kennedy, R. Multi-substrate compatible ELISA procedures for rapid and high sensitivity immunoassays. Nat. Protoc. 2011, 6, 439–445.
[14]  Dixit, C.K.; Vashist, S.K.; O’Neill, F.T.; O’Reilly, B.; MacCraith, B.D.; O’Kennedy, R. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal. Chem. 2010, 82, 7049–7052.
[15]  Vashist, S.K. A highly-sensitive and rapid Surface Plasmon Resonance immunoassay procedure based on the covalent-oriented immobilization of antibodies. Protoc. Exch. 2011.
[16]  Vashist, S.K.; O’Sullivan, S.A.; O’Neill, F.T.; H?lthofer, H.; O’Reilly, B.; Dixit, C.K. A Multi-Well Plate for Biological Assays. W.I.P.O. Patent WO/2010/044083, 24 April 2010.
[17]  Dixit, C.K.; Vashist, S.K.; MacCraith, B.D.; O’Kennedy, R. Evaluation of apparent non-specific protein loss due to adsorption on sampling tube surfaces and/or comprised immunogenicity. Analyst 2011, 136, 1406–1411.
[18]  Zheng, D.; Vashist, S.K.; Luong, J.H.T.; Al-Rubeaan, K.; Sheu, F.-S. Mediatorless amperometric glucose biosensing using 3-aminopropyltriethoxysilane functionalized graphene. Talanta 2012. in press.
[19]  Zheng, D.; Vashist, S.K.; Luong, J.H.T.; Al-Rubeaan, K.; Sheu, F.-S. Rapid and simple preparation of a reagentless glucose electrochemical biosensor. Analyst 2012, 137, 3800–3805, doi:10.1039/c2an35128e.
[20]  EDC. Available online: http://www.piercenet.com/instructions/2160475.pdf (accessed on 13 July 2012).
[21]  NHS and Sulfo-NHS. Available online: http://piercenet.com/instructions/2160650.pdf (accessed on 13 July 2012).
[22]  East, D.A.; Mulvihill, D.P.; Todd, M.; Bruce, I.J. QD-antibody conjugates via carbodiimide-mediated coupling: A detailed study of the variables involved and a possible new mechanism for the coupling reaction under aqueous conditions. Langmuir 2011, 27, 13888–13896.
[23]  Nakajima, N.; Ikada, Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. BioconjugateChem. 1995, 6, 123–130, doi:10.1021/bc00031a015.
[24]  The Human IgG Subclasses. Available online: http://wolfson.huji.ac.il/purification/PDF/affinity/CALBIOCHEM_HumanIgG_Subclasses.pdf (accessed on 13 July 2012).
[25]  Chemistry of Crosslinking. Available online: http://www.piercenet.com/browse.cfm?fldID=CE4D6C5C-5946-4814-9904-C46E01232683 (accessed on 13 July 2012).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133