全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimating the nitrogen content in wheat leaves by near-infrared reflectance spectroscopy
应用近红外光谱估测小麦叶片氮含量

Keywords: leaf,near-infrared spectroscopy,neural network,partial least squares,total nitrogen content,wheat
叶片
,近红外光谱,神经网络,偏最小二乘法,氮含量,小麦

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aims Our objectives were to determine the feasibility of estimating nitrogen content in fresh and dry wheat leaves using near-infrared (NIR) spectroscopy and chemometrics and to establish the near-infrared model for estimating nitrogen content in wheat leaves in order to lay a foundation for wheat nitrogen management. Methods We conducted three field experiments with different years, wheat varieties and nitrogen rates and determined time-course near-infrared absorbance spectroscopy and total nitrogen content from fresh and dry wheat leaves. The methods of partial least squares (PLS), back-propagation neural network (BPNN) and wavelet neural network (WNN) were used to establish the calibration models, and a dataset selected at random was used to evaluate the established models. Important findings Near infrared calibration models based on PLS, BPNN and WNN could be used to estimate nitrogen content in wheat leaves with high precision and stable performance, especially WNN. The validation results showed that the root mean square errors of prediction (RMSEP) for the power model are 0.147, 0.101 and 0.094, respectively, while those for the fresh leaves model are 0.216, 0.175 and 0.169, respectively. The correlation coefficients (R2) for all models are >0.84. Therefore, near-infrared spectrometry can be an efficient method to estimate the nitrogen nutrition of crops.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133