全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2011 

Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS) Reaction

DOI: 10.3390/catal1010155

Keywords: graphite, carbon nanofibers, gold, WGS, CO, H2

Full-Text   Cite this paper   Add to My Lib

Abstract:

Au-based catalysts supported on carbon materials with different structures such as graphite (G) and fishbone type carbon nanofibers (CNF-F) were prepared using two different methods (impregnation and gold-sol) to be tested in the water gas shift (WGS) reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), Raman spectroscopy, elemental analyses (CNH), N 2 adsorption-desorption analysis, temperature-programmed reduction (TPR) and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.

References

[1]  Trimm, D.L. Review: Minimisation of carbon monoxide in a hydrogen stream for fuel cell application. Appl. Catal. A Gen. 2005, 296, 1–11.
[2]  Ruettinger, W.; Ilinich, O.; Farrauto, R.J. A new generation of water gas shift catalysts for fuel cell applications. J. Power Sources 2003, 118, 61–65.
[3]  Gorte, R.J.; Zhao, S. Studies of the water-gas-shift reaction with ceria-supported precious metals. Catal. Today 2005, 104, 18–24.
[4]  Fu, Q.; Deng, W.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl. Catal. B Environ. 2005, 56, 57–68.
[5]  Tabakova, T.; Idakiev, V.; Tenchev, K.; Boccuzzi, F.; Manzoli, M.; Chiorino, A. Pure hydrogen production on a new gold-thoria catalyst for fuel cell applications. Appl. Catal. B Environ. 2006, 63, 94–103.
[6]  Panagiotopoulou, P.; Kondarides, D.I. A comparative study of the water-gas shift activity of Pt catalysts supported on single (MOx) and composite (MOx/Al2O3, MOx/TiO2) metal oxide carriers. Catal. Today 2007, 127, 319–329.
[7]  Tabakova, T.; Manzoli, M.; Vindigni, F.; Idakiev, V.; Boccuzzi, F. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant. J. Phys. Chem. A 2010, 114, 3909–3915.
[8]  Kugai, J.; Miller, J.T.; Guo, N.; Song, C. Role of metal components in Pd-Cu bimetallic catalysts supported on CeO2 for the oxygen-enhanced water gas shift. Appl. Catal. B Environ. 2011, 105, 306–316.
[9]  Kugai, J.; Miller, J.T.; Guo, N.; Song, C. Oxygen-enhanced water gas shift on ceria-supported Pd-Cu and Pt-Cu bimetallic catalysts. J. Catal. 2011, 277, 46–53.
[10]  Luengnaruemitchai, A.; Osuwan, S.; Gulati, E. Comparative studies of low temperature water gas shift reaction over Pt-CeO2; Au-CeO2 and Au-Fe2O3 catalysts. Catal. Commun. 2003, 4, 215–221.
[11]  Andreeva, D.; Idakiev, V.; Tabakova, T.; Ilieva, L.; Falaras, P.; Bourlinosand, A.; Travlos, A. Low temperature water gas shift reaction over Au-CeO2 catalysts. Catal. Today 2002, 72, 51–57.
[12]  Goguet, A.; Meunier, F.C.; Breen, J.P.; Burch, R.; Petch, M.I.; Ghenciu, A.F. Study of the origin of the deactivation of a Pt/CeO2 catalyst during inverse water gas shift (RWGS) reaction. J. Catal. 2004, 226, 382–392.
[13]  Goerke, O.; Pfeifer, P.; Schubert, K. Selective oxidation of CO in microreactors. Appl. Catal. A 2004, 263, 11–18.
[14]  Xue, E.; O'Keefe, M.; Ross, J.R.H. Water gas shift conversion using a feed with a low steam to carbon monoxide ratio and containing sulfur. Catal. Today 1996, 30, 107–118.
[15]  Boccuzzi, D.F.; Chiorino, A.; Manzoli, M.; Andreeva, A.; Tabakova, T.; Ilievab, L.; Ladakiev, L. Gold, silver and copper catalysts supported on TiO2 for pure hydrocarbon production. Catal. Today 2002, 75, 169–175.
[16]  Andreeva, D.; Idakiev, V.; Tabakova, T.; Andreeva, A. Low temperature water gas shift reaction over Au-a-Fe2O3. J. Catal. 1998, 158, 354–355.
[17]  Burch, R. Gold catalysts for pure hydrogen production in the water-gas shift reaction: Activity, structure and reaction mechanism. Phys. Chem. Chem. Phys. 2006, 8, 5483–5500.
[18]  Tibiletti, D.; Amieiro-Fonseca, A.; Burch, R.; Chen, Y.; Fisher, J.M.; Goguet, A.; Hardacre, C.; Hu, P.; Thompsett, D. DFT and in-situ EXAFS investigation of gold/ceria zirconia low temperature water gas shift catalysts: Identification of the nature of active form of gold. J. Phys. Chem. B 2005, 109, 22553–22559.
[19]  De la Osa, A.R.; de Lucas, A.; Valverde, J.L.; Romero, A.; Monteagudo, I.; Sánchez, P. Performance of a sulfur-resistant commercial WGS catalyst employing industrial coal-derived syngas feed. Int. J. Hydrog. Energy 2011, 36, 44–51.
[20]  De la Osa, A.R.; de Lucas, A.; Romero, A.; Valverde, J.L.; Sánchez, P. Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst. Int. J. Hydrog. Energy 2011, 36, 9673–9684.
[21]  Prati, L.; Rossi, M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. 1998, 176, 552–560.
[22]  Demirel, S.; Kern, P.; Lucas, M.; Claus, P. Oxidation of mono- and polyalcohols with gold: Comparison of carbon and ceria supported catalysts. Catal. Today 2007, 122, 292–300.
[23]  Demirel, S.; Lehnert, K.; Lucas, M.; Claus, P. Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts. Appl. Catal. B 2007, 70, 637–643.
[24]  Serp, P.; Corrias, M.; Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 2003, 253, 337–358.
[25]  Rodríguez-Reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 159–175.
[26]  Park, C.; Keane, M.A. Catalyst support effects: Gas-phase hydrogenation of phenol over palladium. J. Colloid Interface Sci. 2003, 266, 183–194.
[27]  Díaz, E.; Casas, J.A.; Mohedano, A.F.; Calvo, L.; Gilarranz, M.A.; Rodríguez, J.J. Kinetics of 4-chlorophenol hydrodechlorination with alumina and activated carbon-supported Pd and Rh catalysts. Ind. Eng. Chem. Res. 2009, 48, 3351–3358.
[28]  Bedia, J.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation. Appl. Catal. B 2010, 9, 8–18.
[29]  De Jong, K.P.; Geus, J.W. Carbon nanofibers: Catalytic synthesis and applications. Catal. Rev. Sci. Eng. 2000, 42, 481–510.
[30]  Amorim, C.; Yuan, G.; Patterson, P.M.; Keane, M.A. Catalytic hydrodechlorination over Pd supported on amorphous and structured carbon. J. Catal. 2005, 234, 268–281.
[31]  Nieto-Márquez, A.; Gil, S.; Romero, A.; Valverde, J.L.; Gómez-Quero, S.; Keane, M.A. Gas phase hydrogenation of nitrobenzene over acid treated structured and amorphous carbon supported Ni catalysts. Appl. Catal. A 2009, 363, 188–198.
[32]  Taboada, C.D.; Batista, J.; Pintar, A.; Levec, J. Preparation, characterization and catalytic properties of carbon nanofiber-supported PT, Pd, Ru monometallic particles in aqueous-phase reactions. Appl. Catal. B 2009, 89, 375–382.
[33]  Bezemer, G.L.; Radstake, P.B.; Koot, V.; van Dillen, A.J.; Geus, J.W.; de Jong, K.P. Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation. J. Catal. 2006, 237, 291–302.
[34]  Liang, C.; Li, Z.; Qiu, J.; Li, C. Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis. J. Catal. 2002, 211, 278–282.
[35]  Amorim, C.; Keane, M.A. Effect of surface acid groups associated with amorphous and structured carbon on the catalytic hydrodechlorination of chlorobenzene. J. Chem. Technol. Biotechnol. 2008, 83, 662–672.
[36]  Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determinarion of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.
[37]  Park, C.; Keane, M.A. Catalyst support effects in the growth of structured carbon from the decomposition of ethylene over nickel. J. Catal. 2004, 221, 386–399.
[38]  Bom, D.; Andrews, R.; Jacques, D.; Anthony, J.; Chen, B.; Meier, M.S.; Selegue, J.P. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2002, 2, 615–619.
[39]  Choi, S.; Park, K.H.; Lee, S.; Koh, K.H. Raman spectra of nano-structured carbon films synthesized using ammonia-containing feed gas. J. Appl. Phys. 2002, 92, 4007:1–4007:5.
[40]  Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Keane, M.A. Gold catalysis at the gas-solid interface: Role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal. Sci. Technol. 2011, 1, 652–661.
[41]  Demirel-Gülen, S.; Lucas, M.; Claus, P. Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal. Today 2005, 102, 166–172.
[42]  Ketchie, W.C.; Fang, Y.-L.; Wong, M.S.; Murayama, M.; Davis, R.J. Influence of gold particle size on aqueous-phase oxidation of carbon monoxide and glycerol. J. Catal. 2007, 250, 94–101.
[43]  Coloma, F.; Sepúlveda-Escribano, A.; Fierro, J.L.G.; Rodríguez-Reinoso, F. Gas phase hydrogenation of crotonaldehyde over Pt/activated carbon catalysts. Influence of the oxygen surface groups on the support. Appl. Catal. A 1997, 150, 165–183.
[44]  Aksoylu, A.E.; Freitas, M.M.A.; Pereira, M.F.R.; Figueiredo, J.L. Effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon 2001, 39, 175–185.
[45]  Jiménez, V.; Sánchez, P.; Valverde, J.L.; Romero, A. Effect of the nature the carbon precursor on the physic-chemical characteristics of the resulting activated carbon materials. Mater. Chem. Phys. 2010, 124, 223–233.
[46]  Wang, F.; Lu, G. The effect of K addition on Au/activated carbon for CO selective oxidation in hydrogen-rich gas. Catal. Lett. 2007, 115, 46–51.
[47]  Sobczak, I.; Jagodzinska, K.; Ziolek, M. Glycerol oxidation on gold catalysts supported on group five metal oxides—A comparative study with other metal oxides and carbon based catalysts. Catal. Today 2010, 158, 121–129.
[48]  Bessel, C.A.; Laubernds, K.; Rodriguez, N.M.; Baker, R.T.K. Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B 2001, 105, 1115–1118.
[49]  Yu, J.L.; Tian, F.J.; Mckenzie, L.J.; Li, C.Z. Char-supported nano iron catalyst for water-gas-shift reaction: Hydrogen production from coal/biomass gasification. Process safety and environmental protection. Trans. Inst. Chem. Eng. Part B 2006, 84, 125–130.
[50]  Djinovic, P.; Batista, J.; Pintar, A. Calcination temperature and CuO loading dependence on CuOCeO2 catalyst activity for water-gas shift reaction. Appl. Catal. A Gen. 2008, 347, 23–33.
[51]  Gunawardana, P.V.D.S.; Lee, H.C.; Kim, D.H. Performance of copper-ceria catalysts for water gas shift reaction in medium temperature range. Int. J. Hydrog. Energy 2009, 34, 1336–1341.
[52]  Andreeva, D.; Ivanov, I.; Ilieva, L.; Sobczak, J.W.; Avdeev, G.; Tabakova, T. Nanosized gold catalysts supported on ceria and ceria-alumina for water gas shift reaction. Appl. Catal. A Gen. 2007, 333, 153–160.
[53]  Karpenko, A.; Leppelt, R.; Plzak, V.; Behm, R.J. Deactivation of a Au-CeO2 catalyst during the low temperature water gas shift reaction and its reactivation: A combined TEM, XRD, XPS, DRIFTS and activity study. J. Catal. 2007, 252, 231–242.
[54]  Janssens, T.V.W.; Clausen, B.S.; Hvrolbek, B.; Falsig, H.; Christensen, C.H.; Bligaard, T.; Norskov, J.K. Insights into the reactivity of supported gold nanoparticles: Combining theory and experiments. Top. Catal. 2007, 44, 15–26.
[55]  Effendi, A.; Hellgardt, K.; Zhang, Z.G.; Yoshida, T. Optimizing H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 2005, 84, 869–874.
[56]  Zhang, R.; Cummer, K.; Suby, A.; Brown, R.C. Biomass-derived hydrogen from an air-blown gasifier. Fuel Process. Technol. 2005, 86, 861–874.
[57]  Ghenciu, A.F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid State Mater. Sci. 2002, 6, 389–399.
[58]  Jiménez, V.; Nieto-Márquez, A.; Díaz, J.A.; Romero, R.; Sánchez, P.; Valverde, J.L.; Romero, A. Pilot plant study of the influence of the operating conditions in the production of carbon nanofibers. Ind. Eng. Chem. Res. 2009, 48, 8407–8417.
[59]  Panagiotopoulou, P.; Kondarides, D.I.; Verykios, X.E. Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metallic phase on catalytic performance. Appl. Catal. A Gen. 2008, 344, 45–54.
[60]  Guerrero-Ruiz, A.; Sepúlveda-Escribano, A.; Rodríguez-Ramos, I. Carbon-supported bimetallic catalysts containing iron. II. Catalytic behaviour in benzene hydrogenation and thiophene hydrodesulphurization. Appl. Catal. A 1992, 81, 101–112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133