Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.
References
[1]
Garbe, C.; Peris, K.; Hauschild, A.; Saiag, P.; Middleton, M.; Spatz, A.; Grob, J.J.; Malvehy, J.; Newton-Bisop, J.; Stratigos, A.; et al. Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur. J. Cancer 2010, 46, 270–283, doi:10.1016/j.ejca.2009.10.032.
[2]
MacKie, R.M.; Hauschild, A.; Eggermont, A.M. Epidemiology of invasive cutaneous melanoma. Ann. Oncol. 2009, 20, vi1–vi7, doi:10.1093/annonc/mdp252. 19617292
[3]
Cipponi, A.; Wieers, G.; van Baren, N.; Coulie, P.G. Tumor-infiltrating lymphocytes: Apparently good for melanoma patients. But why? Cancer Immunol. Immunother 2011, 60, 1153–1160, doi:10.1007/s00262-011-1026-2.
[4]
Parmiani, G.; Castelli, C.; Santinami, M.; Rivoltini, L. Melanoma immunology: Past, present and future. Curr. Opin. Oncol. 2007, 19, 121–127, doi:10.1097/CCO.0b013e32801497d7.
[5]
Ramirez-Montagut, T.; Turk, M.J.; Wolchok, J.D.; Guevara-Patino, J.A.; Houghton, A.N. Immunity to melanoma: Unraveling the relation of tumor immunity and autoimmunity. Oncogene 2003, 22, 3180–3187, doi:10.1038/sj.onc.1206462. 12789294
[6]
Yuan, J.; Adamow, M.; Ginsberg, B.A.; Rasalan, T.S.; Ritter, E.; Gallardo, H.F.; Xu, Y.; Pogoriler, E.; Terzulli, S.L.; Kuk, D.; et al. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc. Natl. Acad. Sci. USA 2011, 8, 16723–16728.
[7]
Yee, C.; Thompson, J.A.; Byrd, D.; Riddell, S.R.; Roche, P.; Celis, E.; Greenberg, P.D. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. USA 2002, 99, 16168–16173, doi:10.1073/pnas.242600099. 12427970
[8]
Mitchell, M.S.; Darrah, D.; Yeung, D.; Halpern, S.; Wallace, A.; Voland, J.; Jones, V.; Kan-Mitchell, J. Phase I trial of adoptive immunotherapy with cytolytic T lymphocytes immunized against a tyrosinase epitope. J. Clin. Oncol. 2002, 20, 1075–1086, doi:10.1200/JCO.20.4.1075.
[9]
Mackensen, A.; Meidenbauer, N.; Vogl, S.; Laumer, M.; Berger, J.; Andreesen, R. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J. Clin. Oncol. 2006, 24, 5060–5069, doi:10.1200/JCO.2006.07.1100. 17075125
[10]
Novellino, L.; Castelli, C.; Parmiani, G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. 2005, 54, 187–207, doi:10.1007/s00262-004-0560-6.
[11]
Parmiani, G.; de Filippo, A.; Novellino, L.; Castelli, C. Unique human tumor antigens: Immunobiology and use in clinical trials. J. Immunol. 2007, 178, 1975–1979. 17277099
Steitz, J.; Brück, J.; Gambotto, A.; Knop, J.; Tüting, T. Genetic immunization with a melanocytic self-antigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity. Gene Ther. 2002, 9, 208–213, doi:10.1038/sj.gt.3301634. 11859424
[14]
Bronte, V.; Apolloni, E.; Ronca, R.; Zamboni, P.; Overwijk, W.W.; Surman, D.R.; Restifo, N.P.; Zanovello, P. Genetic vaccination with “self” tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res. 2000, 60, 253–258. 10667570
[15]
Kato, M.; Takahashi, M.; Akhand, A.A.; Liu, W.; Dai, Y.; Shimizu, S.; Iwamoto, T.; Suzuki, H.; Nakashima, I. Transgenic mouse model for skin malignant melanoma. Oncogene 1998, 17, 1885–1888, doi:10.1038/sj.onc.1202077. 9778055
[16]
Lengagne, R.; Le Gal, F.A.; Garcette, M.; Fiette, L.; Ave, P.; Briand, J.P.; Massot, C.; Nakashima, I.; Rénia, L.; Guillet, J.G.; et al. Spontaneous vitiligo in an animal model for human melanoma: Role of tumor-specific CD8+ T cells. Cancer Res. 2004, 64, 1496–1501, doi:10.1158/0008-5472.CAN-03-2828. 14973052
[17]
Umansky, V.; Abschuetz, O.; Osen, W.; Ramacher, M.; Zhao, F.; Kato, M.; Schadendorf, D. Melanoma-specific memory T cells are functionally active in Ret transgenic mice without macroscopic tumors. Cancer Res. 2008, 68, 9451–9458, doi:10.1158/0008-5472.CAN-08-1464. 19010920
[18]
Houghton, A.N.; Polsky, D. Focus on melanoma. Cancer Cell 2002, 2, 275–278, doi:10.1016/S1535-6108(02)00161-7. 12398891
[19]
Lengagne, R.; Graff-Dubois, S.; Garcette, M.; Renia, L.; Kato, M.; Guillet, J.G.; Engelhard, V.H.; Avril, M.F.; Abastado, J.P.; Prévost-Blondel, A. Distinct role for CD8 T cells toward cutaneous tumors and visceral metastases. J. Immunol. 2008, 180, 130–137. 18097012
[20]
Eyles, J.; Puaux, A.L.; Wang, X.; Toh, B.; Prakash, C.; Hong, M.; Tan, T.G.; Zheng, L.; Ong, L.C.; Jin, Y.; et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 2010, 120, 2030–2039, doi:10.1172/JCI42002. 20501944
[21]
Hong, M.; Puaux, A.L.; Huang, C.; Loumagne, L.; Tow, C.; Mackay, C.; Kato, M.; Prévost-Blondel, A.; Avril, M.F.; Nardin, A.; et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 2011, 71, 6997–7009, doi:10.1158/0008-5472.CAN-11-1466. 21948969
[22]
Parkhurst, M.R.; Fitzgerald, E.B.; Southwood, S.; Sette, A.; Rosenberg, S.A.; Kawakami, Y. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res. 1998, 58, 4895–4901. 9809996
[23]
Bloom, M.B.; Perry-Lalley, D.; Robbins, P.F.; Li, Y.; El-Gamil, M.; Rosenberg, S.A.; Yang, J.C. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med. 1997, 185, 453–459, doi:10.1084/jem.185.3.453. 9053445
[24]
Porgador, A.; Feldman, M.; Eisenbach, L. Immunotherapy of tumor metastasis via gene therapy. Nat. Immun. 1994, 13, 113–130. 8173233
[25]
Kochenderfer, J.N.; Gress, R.E. A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp. Biol. Med. 2007, 232, 1130–1141, doi:10.3181/0702-MR-42.
[26]
Benjamin, C.L.; Melnikova, V.O.; Ananthaswamy, H.N. Models and mechanisms in malignant melanoma. Mol. Carcinog. 2007, 46, 671–678, doi:10.1002/mc.20353. 17570501
[27]
Zaidi, M.R.; Day, C.-P.; Merlino, G. From UVs to Metastases: Modeling melanoma initiation and progression in the mouse. J. Invest. Dermatol. 2008, 128, 2381–2391, doi:10.1038/jid.2008.177. 18787547
[28]
Becker, J.C.; Houben, R.; Schrama, D.; Voigt, H.; Ugurel, S.; Reisfeld, R.A. Mouse models for melanoma: A personal perspective. Exp. Dermatol. 2010, 19, 157–164, doi:10.1111/j.1600-0625.2009.00986.x. 19849715
[29]
Boon, T.; Coulie, P.G.; van den Eynde, B.J.; van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol. 2006, 24, 175–208, doi:10.1146/annurev.immunol.24.021605.090733. 16551247
[30]
Jandus, C.; Speiser, D.; Romero, P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res. 2009, 22, 711–723, doi:10.1111/j.1755-148X.2009.00634.x. 19735459
[31]
Balch, C.M.; Soong, S.J.; Murad, T.M.; Smith, J.W.; Maddox, W.A.; Durant, J.R. A multifactorial analysis of melanoma. IV. Prognostic factors in 200 melanoma patients with distant metastases (stage III). J. Clin. Oncol. 1983, 1, 126–134. 6668496
[32]
Kianizad, K.; Marshall, L.A.; Grinshtein, N.; Bernard, D.; Margl, R.; Cheng, S.; Beermann, F.; Wan, Y.; Bramson, J. Elevated frequencies of self-reactive CD8+ T cells following immunization with a xenoantigen are due to the presence of a heteroclitic CD4+ T cell helper epitope. Cancer Res. 2007, 67, 6459–6467, doi:10.1158/0008-5472.CAN-06-4336. 17616707
[33]
Ostrand-Rosenberg, S. Immune surveillance: A balance between protumor and antitumor immunity. Curr. Opin. Genet. Dev. 2008, 18, 11–18, doi:10.1016/j.gde.2007.12.007. 18308558
[34]
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 2005, 5, 263–274. 15776005
[35]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174, doi:10.1038/nri2506. 19197294
[36]
Sica, A.; Larghi, P.; Mancino, A.; Rubino, L.; Porta, C.; Totaro, M.G.; Rimoldi, M.; Biswas, S.K.; Allavena, P.; Mantovani, A. Macrophage polarization in tumour progression. Semin. Cancer Biol. 2008, 18, 349–355, doi:10.1016/j.semcancer.2008.03.004. 18467122
[37]
Meyer, C.; Sevko, A.; Ramacher, M.; Bazhin, A.V.; Falk, C.S.; Osen, W.; Borrello, I.; Kato, M.; Schadendorf, D.; Baniyash, M.; et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc. Natl. Acad. Sci. USA 2011, 108, 17111–17116, doi:10.1073/pnas.1108121108. 21969559
[38]
Zhao, F.; Falk, C.; Osen, W.; Kato, M.; Schadendorf, D.; Umansky, V. Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma. Clin. Cancer Res. 2009, 15, 4382–4390, doi:10.1158/1078-0432.CCR-09-0399. 19549770
[39]
Kimpfler, S.; Sevko, A.; Ring, S.; Falk, C.; Osen, W.; Frank, K.; Kato, M.; Mahnke, K.; Schadendorf, D.; Umansky, V. Skin melanoma development in ret transgenic mice despite the depletion of CD25+Foxp3+ regulatory T cells in lymphoid organs. J. Immunol. 2009, 183, 6330–6337, doi:10.4049/jimmunol.0900609. 19841169
[40]
Umansky, V.; Sevko, A. Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunol. Immunother. 2012, 61, 275–282, doi:10.1007/s00262-011-1164-6. 22120757
[41]
Lengagne, R.; Pommier, A.; Caron, J.; Douguet, L.; Garcette, M.; Kato, M.; Avril, M.F.; Abastado, J.P.; Bercovici, N.; Lucas, B.; et al. T cells contribute to tumor progression by favoring pro-tumoral properties of intra-tumoral myeloid cells in a mouse model for spontaneous melanoma. PLoS One 2011, 6, e20235, doi:10.1371/journal.pone.0020235. 21633700
[42]
Firat, H.; Garcia-Pons, F.; Tourdot, S.; Pascolo, S.; Scardino, A.; Garcia, Z.; Michel, M.L.; Jack, R.W.; Jung, G.; Kosmatopoulos, K.; et al. H-2 class I knockout, HLA-A2.1-transgenic mice: A versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur. J. Immunol. 1999, 29, 3112–3121, doi:10.1002/(SICI)1521-4141(199910)29:10<3112::AID-IMMU3112>3.0.CO;2-Q. 10540322
[43]
Osen, W.; Peiler, T.; ?hlschlager, P.; Caldeira, S.; Faath, S.; Michel, N.; Müller, M.; Tommasino, M.; Jochmus, I.; Gissmann, L. A DNA vaccine based on a shuffled E7 oncogene of the human papillomavirus type 16 (HPV 16) induces E7-specific cytotoxic T cells but lacks transforming activity. Vaccine 2001, 19, 4276–4286, doi:10.1016/S0264-410X(01)00154-2.
[44]
Tsukamoto, K.; Jackson, I.J.; Urabe, K.; Montague, P.M.; Hearing, V.J. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 1992, 11, 519–526. 1537333
[45]
Falk, K.; R?tzschke, O.; Stevanovic, S.; Jung, G.; Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351, 290–296, doi:10.1038/351290a0. 1709722
[46]
Milich, D.R.; Hughes, J.L.; McLachlan, A.; Thornton, G.B.; Moriarty, A. Hepatitis B synthetic immunogen comprised of nucleocapsid T-cell sites and an envelope B-cell epitope. Proc. Natl. Acad. Sci. USA 1988, 85, 1610–1614, doi:10.1073/pnas.85.5.1610. 2449694