This paper presents nano-impact (low cycle fatigue) behavior of as-deposited amorphous nitinol (TiNi) thin film deposited on Si wafer. The nitinol film was 3.5 μm thick and was deposited by the sputtering process. Nano-impact tests were conducted to comprehend the localized fatigue performance and failure modes of thin film using a calibrated nano-indenter NanoTest?, equipped with standard diamond Berkovich and conical indenter in the load range of 0.5 mN to 100 mN. Each nano-impact test was conducted for a total of 1000 fatigue cycles. Depth sensing approach was adapted to understand the mechanisms of film failure. Based on the depth-time data and surface observations of films using atomic force microscope, it is concluded that the shape of the indenter test probe is critical in inducing the localized indentation stress and film failure. The measurement technique proposed in this paper can be used to optimize the design of nitinol thin films.
References
[1]
Fu, Y.Q.; Du, H.; Huang, W.; Zhang, S.; Hu, M. TiNi-based thin films in MEMS applications: A review. Sens. Actuat A 2004, 112, 395–408, doi:10.1016/j.sna.2004.02.019.
[2]
Pelton, A.R. Nitinol fatigue: A review of microstructures and mechanisms. J. Mater. Eng. Perform. 2011, 20, 613–617, doi:10.1007/s11665-011-9864-9.
[3]
Pelton, A.R.; Schroeder, V.; Mitchell, M.R.; Gong, X.-Y.; Barney, M.; Robertson, S.W. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 2008, 1, 153–164, doi:10.1016/j.jmbbm.2007.08.001.
[4]
Miyazaki, S.; Ishida, A. Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Mat. Sci. Eng. A 1999, 273–275, 106–133, doi:10.1016/S0921-5093(99)00292-0.
Fu, Y.Q.; Du, H.J.; Zhang, S. Curvature Method as a Tool for Shape Memory Effect. In Surface Engineering: Science and Technology II, Symposium at TMS 2002 Annual Meeting, TMS, Seattle, WA, USA, 17–21 February 2002; Kumar, A., Chung, Y.W., Moore, J.J., Doll, G.L., Yahi, K., Misra, D.S., Eds.; pp. 293–303.
[7]
Faisal, N.H.; Ahmed, R.; Fu, Y.Q. Nano-Impact Testing and Failure Mechanism of Solar Panel DLC Film. In Proceedings of the Advanced Materials Technologies Conference (AMTC’11), Riyadh, Saudi Arabia, 17–19 October 2011; King Abdulaziz City for Science and Technology: Riyadh, Saudi Arabia, 2011; pp. 36–44.
[8]
Beake, B.D.; Garcia, M.J.I.; Smith, J.F. Micro-impact testing: A new technique for investigating fracture toughness. Thin Solid Films 2002, 398–399, 438–443.
[9]
Beake, B.D.; Lau, S.P.; Smith, J.F. Evaluating the fracture properties and fatigue wear of tetrahedral amorphous carbon films on silicon by nano-impact testing. Surf. Coat. Technol. 2004, 177–178, 611–615.
[10]
Faisal, N.H.; Ahmed, R.; Reuben, R.L. Indentation testing and its acoustic emission response: Applications and emerging trends. Int. Mater. Rev. 2011, 56, 98–142.
[11]
Li, X.D.; Bhushan, B. Development of a nanoscale fatigue measurement technique and its application to ultrathin amorphous carbon coatings. Scr. Mater. 2002, 47, 473–479, doi:10.1016/S1359-6462(02)00181-1.
[12]
Bhushan, B.; Li, X. Nanomechanical characterization of solid surfaces and thin films. Int. Mater. Rev. 2003, 48, 125–164, doi:10.1179/095066003225010227.
[13]
Bhushan, B. Nanotribology and nanomechanics. Wear 2005, 259, 1507–1531, doi:10.1016/j.wear.2005.01.010.
[14]
Faisal, N.H.; Ahmed, R.; Fu, Y.Q.; Elakwah, Y.O.; Alhoshan, M. Influence of indenter shape on DLC film failure during multiple load cycle nanoindentation. Mater. Sci. Technol. 2012. Available online: http://dx.doi.org/10.1179/1743284712Y.0000000039.
[15]
Ahmed, R.; Fu, Y.Q.; Faisal, N.H. Fatigue at nanoscale: An integrated stiffness and depth sensing approach to investigate the mechanisms of failure in diamond-like carbon film. J. Tribol. 2012, 134, 012001.
[16]
Fu, Y.Q.; Du, H.J.; Zhang, S.; Ong, S.E. Effects of silicon nitride interlayer on phase transformation and adhesion of TiNi films. Thin Solid Films 2005, 476, 352–357, doi:10.1016/j.tsf.2004.09.058.
[17]
Fu, Y.Q.; Du, H.J.; Zhang, S. Functionally graded TiN/TiNi shape memory alloy films. Mater. Lett. 2003, 57, 2995–2999, doi:10.1016/S0167-577X(02)01419-2.
[18]
Fu, Y.Q.; Du, H.J.; Zhang, S. Deposition of TiN layer on TiNi thin films to improve surface properties. Surf. Coat. Technol. 2003, 167, 129–136, doi:10.1016/S0257-8972(02)00898-8.
[19]
Fu, Y.Q.; Zhang, S.; Wu, M.J.; Huang, W.M.; Du, H.J.; Luo, J.K.; Flewitt, A.J.; Milne, W.I. On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 2006, 515, 80–86, doi:10.1016/j.tsf.2005.12.039.
[20]
Huang, W.; Pellegrino, S.; Bashford, D.P. Materials and Mechanical Testing. In Proceedings of the Conference on Spacecraft Structures, Noordwijk, The Netherlands, 27–29 March 1996.
[21]
Faisal, N.H.; Ahmed, R. A review of patented methodologies in instrumented indentation residual stress measurements. Recent Pat. on Mech. Eng. 2011, 4, 138–152, doi:10.2174/1874477X11104020138.
[22]
Faisal, N.H.; Steel, J.A.; Ahmed, R.; Reuben, R.L. The use of acoustic emission to characterize fracture behavior during Vickers indentation of HVOF thermally sprayed WC-Co coatings. J. Therm. Spray Technol. 2009, 18, 525–535, doi:10.1007/s11666-009-9334-1.
[23]
Faisal, N.H.; Reuben, R.L.; Ahmed, R. An improved measurement of Vickers indentation behaviour through enhanced instrumentation. Meas. Sci. Technol. 2011, 22.
[24]
Li, X.D.; Bhushan, B. Micro/nanomechanical and tribological studies of bulk and thin-film materials used in magnetic recording heads. Thin Solid Films 2001, 398, 313–319, doi:10.1016/S0040-6090(01)01343-8.
[25]
Bull, S.J. Nanoindentation of coatings. J. Phys. D Appl. Phys. 2005, 38, R393–R413, doi:10.1088/0022-3727/38/24/R01.
[26]
Lawn, B.R.; Cook, R.F. Probing material properties with sharp indenters: A retrospective. J. Mater. Sci. 2012, 47, 1–22, doi:10.1007/s10853-011-5865-1.
[27]
Drory, M.D.; Hutchinson, J.W. Measurement of the adhesion of a brittle film on a ductile substrate by indentation. Proc. R. Soc. London Ser. A 1996, 452, 2319–2341.
[28]
Cordill, M.J.; Bahr, D.F.; Moody, N.R.; Gerberich, W.W. Recent development in thin film adhesion measurement. IEEE Trans. Device Mater. Reliab. 2004, 4, 163–168, doi:10.1109/TDMR.2004.829071.
[29]
Raju, T.D.; Nakasa, K.; Kato, M. Relation between delamination of thin films and backward deviation of load-displacement curves under repeating nanoindentation. Acta Mater. 2003, 51, 457–467, doi:10.1016/S1359-6454(02)00429-9.
[30]
Ma, X.-G.; Komvopolous, K. Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 2003, 83, 3773–3775, doi:10.1063/1.1623942.
[31]
Kumar, A.; Kaur, D. Nanoindentation and corrosion studies of TiN/NiTi thin films for biomedical applications. Surf. Coat. Technol. 2009, 204, 1132–1136, doi:10.1016/j.surfcoat.2009.06.002.