全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Coatings  2012 

Plant Products for Innovative Biomaterials in Dentistry

DOI: 10.3390/coatings2030179

Keywords: plant products, dental biomaterials, coatings, scaffolds, fillers, osseointegration, periodontal regeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dental biomaterials and natural products represent two of the main growing research fields, revealing plant-derived compounds may play a role not only as nutraceuticals in affecting oral health, but also in improving physico-chemical properties of biomaterials used in dentistry. Therefore, our aim was to collect all available data concerning the utilization of plant polysaccharides, proteins and extracts rich in bioactive phytochemicals in enhancing performance of dental biomaterials. Although compelling evidences are suggestive of a great potential of plant products in promoting material-tissue/cell interface, to date, only few authors have investigated their use in development of innovative dental biomaterials. A small number of studies have reported plant extract-based titanium implant coatings and periodontal regenerative materials. To the best of our knowledge, this review is the first to deal with this topic, highlighting a general lack of research findings in an interesting field which still needs to be investigated.

References

[1]  Avila, G.; Misch, K.; Galindo-Moreno, P.; Wang, H.-L. Implant surface treatment using biomimetic agents. Implant Dent. 2009, 18, 17–26, doi:10.1097/ID.0b013e318192cb7d.
[2]  Reyes, C.D.; Petrie, T.A.; Burns, K.L.; Schwartz, Z.; García, A.J. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007, 28, 3228–3235, doi:10.1016/j.biomaterials.2007.04.003.
[3]  Le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 2007, 23, 844–854, doi:10.1016/j.dental.2006.06.025.
[4]  Brunski, J.B. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv. Dent. Res. 1999, 13, 99–119, doi:10.1177/08959374990130012301.
[5]  Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implant. Res. 2009, 20, S172–S184, doi:10.1111/j.1600-0501.2009.01775.x.
[6]  Albrektsson, T.; Brunski, J.; Wennerberg, A. “A requiem for the periodontal ligament” revisited. Int. J. Prosthodont. 2009, 22, 120–122.
[7]  Clarke, S.A.; Revell, P.A. Integrin expression at the bone/biomaterial interface. J. Biomed. Mater. Res. 2001, 57, 84–91, doi:10.1002/1097-4636(200110)57:1<84::AID-JBM1145>3.0.CO;2-5.
[8]  Kellar, R.S.; Kleinert, L.B.; Williams, S.K. Characterization of angiogenesis and inflammation surrounding ePTFE implanted on the epicardium. J. Biomed. Mater. Res. 2002, 61, 226–233, doi:10.1002/jbm.10021.
[9]  Roberts, W.E. Bone tissue interface. J. Dent. Educ. 1988, 52, 804–809.
[10]  Morra, M. Biochemical modification of titanium surfaces: Peptides and ECM proteins. Eur. Cell Mater. 2006, 12, 1–15.
[11]  Junker, R.; Dimakis, A.; Thoneick, M.; Jansen, J.A. Effects of implant surface coatings and composition on bone integration: A systematic review. Clin. Oral Implant. Res. 2009, 20, S185–S206, doi:10.1111/j.1600-0501.2009.01777.x.
[12]  Kokkonen, H.; Cassinelli, C.; Verhoef, R.; Morra, M.; Schols, H.A.; Tuukkanen, J. Differentiation of osteoblasts on pectin-coated titanium. Biomacromolecules 2008, 9, 2369–2376, doi:10.1021/bm800356b.
[13]  Kokkonen, H.; Niiranen, H.; Schols, H.A.; Morra, M.; Stenb?ck, F.; Tuukkanen, J. Pectin-coated titanium implants are well-tolerated in vivo. J. Biomed. Mater. Res. A 2010, 93, 1404–1409.
[14]  Jain, A.; Dixit, J.; Prakash, D. Modulatory effects of Cissus quadrangularis on periodontal regeneration by bovine-derived hydroxyapatite in intrabony defects: Exploratory clinical trial. J. Int. Acad. Periodontol. 2008, 10, 59–65.
[15]  Kim, H.-Y.; Kim, C.-S.; Jhon, G.-J.; Moon, I.-S.; Choi, S.-H.; Cho, K.-S.; Chai, J.-K.; Kim, C.-K. The effect of safflower seed extract on periodontal healing of 1-wall intrabony defects in beagle dogs. J. Periodontol. 2002, 73, 1457–1466, doi:10.1902/jop.2002.73.12.1457.
[16]  Song, W.-S.; Kim, C.-S.; Choi, S.-H.; Jhon, G.-J.; Kim, H.-Y.; Cho, K.-S.; Kim, C.-K.; Chai, J.-K. The effects of a bioabsorbable barrier membrane containing safflower seed extracts on periodontal healing of 1-wall intrabony defects in beagle dogs. J. Periodontol. 2005, 76, 22–33, doi:10.1902/jop.2005.76.1.22.
[17]  Merolli, A.; Nicolais, L.; Ambrosio, L.; Santin, M. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit. Biomed. Mater. 2010, 5.
[18]  Yapo, B.M. Pineapple and banana pectins comprise fewer homogalacturonan building blocks with a smaller degree of polymerization as compared with yellow passion fruit and lemon pectins: Implication for gelling properties. Biomacromolecules 2009, 10, 717–721, doi:10.1021/bm801490e.
[19]  Redondo-Nevado, J.; Moyano, E.; Medina-Escobar, N.; Caballero, J.L.; Mu?oz-Blanco, J. A fruit-specific and developmentally regulated endopolygalacturonase gene from strawberry (Fragaria × ananassa cv. Chandler). J. Exp. Bot. 2001, 52, 1941–1945, doi:10.1093/jexbot/52.362.1941.
[20]  Vincken, J.-P.; Schols, H.A.; Oomen, R.J.F.J.; McCann, M.C.; Ulvskov, P.; Voragen, A.G.J.; Visser, R.G.F. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 2003, 132, 1781–1789, doi:10.1104/pp.103.022350.
[21]  Bonnin, E.; Dolo, E.; Le Goff, A.; Thibault, J.-F. Characterisation of pectin subunits released by an optimised combination of enzymes. Carbohydr. Res. 2002, 337, 1687–1696, doi:10.1016/S0008-6215(02)00262-8.
[22]  Liu, L.; Won, Y.J.; Cooke, P.H.; Coffin, D.R.; Fishman, M.L.; Hicks, K.B.; Ma, P.X. Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications. Biomaterials 2004, 25, 3201–3210, doi:10.1016/j.biomaterials.2003.10.036.
[23]  Munarin, F.; Guerreiro, S.G.; Grellier, M.A.; Tanzi, M.C.; Barbosa, M.A.; Petrini, P.; Granja, P.L. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 2011, 12, 568–577, doi:10.1021/bm101110x.
[24]  Munarin, F.; Giuliano, L.; Bozzini, S.; Tanzi, M.C.; Petrini, P. Mineral phase deposition on pectin microspheres. Mat. Sci. Eng. C 2010, 30, 491–496, doi:10.1016/j.msec.2010.01.010.
[25]  Munarin, F.; Petrini, P.; Tanzi, M.C.; Barbosa, M.A.; Granja, P.L. Biofunctional chemically modified pectin for cell delivery. Soft Matter 2012, 8, 4731–4739.
[26]  Mishra, R.K.; Datt, M.; Pal, K.; Banthia, A.K. Preparation and characterization of amidated pectin based hydrogels for drug delivery system. J. Mater. Sci. Mater. Med. 2008, 19, 2275–2280, doi:10.1007/s10856-007-3310-4.
[27]  Munarin, F.; Petrini, P.; Farè, S.; Tanzi, M.C. Structural properties of polysaccharide-based microcapsules for soft tissue regeneration. J. Mater. Sci. Mater. Med. 2010, 21, 365–375, doi:10.1007/s10856-009-3860-8.
[28]  Ishii, T.; Matsunaga, T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 2001, 57, 969–974.
[29]  Willats, W.G.; McCartney, L.; Mackie, W.; Knox, J.P. Pectin: Cell biology and prospects for functional analysis. Plant Mol. Biol. 2001, 47, 9–27, doi:10.1023/A:1010662911148.
[30]  Schols, H.A.; Voragen, A.G.; Colquhoun, I.J. Isolation and characterization of rhamnogalacturonan oligomers, liberated during degradation of pectic hairy regions by rhamnogalacturonase. Carbohydr. Res. 1994, 256, 97–111, doi:10.1016/0008-6215(94)84230-2.
[31]  Schols, H.A.; Vierhuis, E.; Bakx, E.J.; Voragen, A.G. Different populations of pectic hairy regions occur in apple cell walls. Carbohydr. Res. 1995, 275, 343–360, doi:10.1016/0008-6215(95)00155-M.
[32]  Morra, M.; Cassinelli, C.; Cascardo, G.; Nagel, M.-D.; Della Volpe, C.; Siboni, S.; Maniglio, D.; Brugnara, M.; Ceccone, G.; Schols, H.A.; et al. Effects on interfacial properties and cell adhesion of surface modification by pectic hairy regions. Biomacromolecules 2004, 5, 2094–2104, doi:10.1021/bm049834q.
[33]  Nagel, M.-D.; Verhoef, R.; Schols, H.; Morra, M.; Knox, J.P.; Ceccone, G.; Della Volpe, C.; Vigneron, P.; Bussy, C.; Gallet, M.; et al. Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts. Biochim. Biophys. Acta 2008, 1780, 995–1003, doi:10.1016/j.bbagen.2008.04.002.
[34]  Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900, doi:10.1016/j.carres.2009.05.021.
[35]  Chen, C.-H.; Sheu, M.-T.; Chen, T.-F.; Wang, Y.-C.; Hou, W.-C.; Liu, D.-Z.; Chung, T.-C.; Liang, Y.-C. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharmacol. 2006, 72, 1001–1009.
[36]  Salman, H.; Bergman, M.; Djaldetti, M.; Orlin, J.; Bessler, H. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomed. Pharmacother. 2008, 62, 579–582, doi:10.1016/j.biopha.2008.07.058.
[37]  Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohyd. Polym. 2011, 86, 373–385, doi:10.1016/j.carbpol.2011.05.065.
[38]  Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277, doi:10.1016/j.pbi.2008.03.006.
[39]  Wang, N.L.; Kiyohara, H.; Matsumoto, T.; Otsuka, H.; Hirano, M.; Yamada, H. Polyclonal antibody against a complement-activating pectin from the roots of Angelica acutiloba. Planta Med. 1994, 60, 425–429, doi:10.1055/s-2006-959524.
[40]  Sakurai, M.H.; Matsumoto, T.; Kiyohara, H.; Yamada, H. B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. Immunology 1999, 97, 540–547, doi:10.1046/j.1365-2567.1999.00774.x.
[41]  Michaelsen, T.E.; Gilje, A.; Samuelsen, A.B.; H?g?sen, K.; Paulsen, B.S. Interaction between human complement and a pectin type polysaccharide fraction, PMII, from the leaves of Plantagomajor L. Scand. J. Immunol. 2000, 52, 483–490, doi:10.1046/j.1365-3083.2000.00801.x.
[42]  Dourado, F.; Madureira, P.; Carvalho, V.; Coelho, R.; Coimbra, M.A.; Vilanova, M.; Mota, M.; Gama, F.M. Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds. Carbohydr. Res. 2004, 339, 2555–2566, doi:10.1016/j.carres.2004.07.024.
[43]  Wang, X.-S.; Dong, Q.; Zuo, J.-P.; Fang, J.-N. Structure and potential immunological activity of apectin from Centellaasiatica (L.) Urban. Carbohydr. Res. 2003, 338, 2393–2402, doi:10.1016/S0008-6215(03)00380-X.
[44]  Bussy, C.; Verhoef, R.; Haeger, A.; Morra, M.; Duval, J.-L.; Vigneron, P.; Bensoussan, A.; Velzenberger, E.; Cascardo, G.; Cassinelli, C.; et al. Modulating in vitro bone cell and macrophage behavior by immobilized enzymatically tailored pectins. J. Biomed. Mater. Res. A 2008, 86, 597–606.
[45]  Kokkonen, H.E.; Ilvesaro, J.M.; Morra, M.; Schols, H.A.; Tuukkanen, J. Effect of modified pectin molecules on the growth of bone cells. Biomacromolecules 2007, 8, 509–515, doi:10.1021/bm060614h.
[46]  Bumgardner, J.D.; Wiser, R.; Elder, S.H.; Jouett, R.; Yang, Y.; Ong, J.L. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J. Biomater. Sci. Polym. Ed. 2003, 14, 1401–1409, doi:10.1163/156856203322599734.
[47]  Nagel, M.-D.; Verhoef, R.; Schols, H.; Morra, M.; Knox, J.P.; Ceccone, G.; Della Volpe, C.; Vigneron, P.; Bussy, C.; Gallet, M.; et al. Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts. Biochim. Biophys. Acta 2008, 1780, 995–1003, doi:10.1016/j.bbagen.2008.04.002.
[48]  Sculean, A.; Nikolidakis, D.; Schwarz, F. Regeneration of periodontal tissues: Combinations of barrier membranes and grafting materials—Biological foundation and preclinical evidence: A systematic review. J. Clin. Periodontol. 2008, 35, 106–116, doi:10.1111/j.1600-051X.2008.01263.x.
[49]  Trombelli, L.; Farina, R. Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J. Clin. Periodontol. 2008, 35, 117–135, doi:10.1111/j.1600-051X.2008.01265.x.
[50]  Beutner, R.; Michael, J.; Schwenzer, B.; Scharnweber, D. Biological nano-functionalization of titanium-based biomaterial surfaces: A flexible toolbox. J. R. Soc. Interface 2010, 7, S93–S105, doi:10.1098/rsif.2009.0418.focus.
[51]  Grzesik, W.J.; Narayanan, A.S. Cementum and periodontal wound healing and regeneration. Crit. Rev. Oral Biol. Med. 2002, 13, 474–484, doi:10.1177/154411130201300605.
[52]  Taba, M., Jr.; Jin, Q.; Sugai, J.V.; Giannobile, W.V. Current concepts in periodontal bioengineering. Orthod. Craniofac. Res. 2005, 8, 292–302, doi:10.1111/j.1601-6343.2005.00352.x.
[53]  Benatti, B.B.; Silvério, K.G.; Casati, M.Z.; Sallum, E.A.; Nociti, F.H., Jr. Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells. J. Biosci. Bioeng. 2007, 103, 1–6, doi:10.1263/jbb.103.1.
[54]  Varoni, E.M.; Lodi, G.; Sardella, A.; Carrassi, A.; Iriti, M. Plant polyphenols and oral health: Old phytochemicals for new fields. Curr. Med. Chem. 2012, 19, 1706–1720, doi:10.2174/092986712799945012.
[55]  Srivastava, K.A.; Mishra, J.N.; Behera, B.R.; Shrivastava, A.K.; Srivastava, P.; Tiwari, B.N. A plant (Cissus quadrangularis) with various ethnopharmacological action: A review. J. Pharm. Res. 2011, 4, 1887–1890.
[56]  Deka, D.K.; Lahon, L.C.; Saikia, J.; Mukit, A. Effect of Cissus quadrangularis in accelerating healing process of experimentally fractured radius-ulna of dog, a preliminary study. Indian J. Pharmacol. 1994, 26, 44–45.
[57]  Mehta, M.; Kaur, N.; Bhutani, K.K. Determination of marker constituents from Cissus quadrangularis Linn. and their quantitation by HPTLC and HPLC. Phytochem. Anal. 2001, 12, 91–95, doi:10.1002/pca.569.
[58]  Thakur, A.; Jain, V.; Hingorani, L.; Laddha, K.S. Phytochemical Studies on Cissus quadrangularis Linn. Pharmacogn. Res. 2009, 1, 213.
[59]  Panthong, A.; Supraditaporn, W.; Kanjanapothi, D.; Taesotikul, T.; Reutrakul, V. Analgesic, anti-inflammatory and venotonic effects of Cissus quadrangularis Linn. J. Ethnopharmacol. 2007, 110, 264–270, doi:10.1016/j.jep.2006.09.018.
[60]  Jainu, M.; Mohan, K.V. Protective role of ascorbic acid isolated from Cissus quadrangularis on NSAID induced toxicity through immunomodulating response and growth factors expression. Int. Immunopharmacol. 2008, 8, 1721–1727, doi:10.1016/j.intimp.2008.08.005.
[61]  Srisook, K.; Palachot, M.; Mongkol, N.; Srisook, E.; Sarapusit, S. Anti-inflammatory effect of ethyl acetate extract from Cissus quadrangularis Linn may be involved with induction of heme oxygenase-1 and suppression of NF-κB activation. J. Ethnopharmacol. 2011, 133, 1008–1014, doi:10.1016/j.jep.2010.11.029.
[62]  Potu, B.K.; Bhat, K.M.R.; Rao, M.S.; Nampurath, G.K.; Chamallamudi, M.R.; Nayak, S.R.; Muttigi, M.S. Petroleum ether extract of Cissus quadrangularis (Linn.) enhances bone marrow mesenchymal stem cell proliferation and facilitates osteoblastogenesis. Clinics (Sao Paulo) 2009, 64, 993–998, doi:10.1590/S1807-59322009001000010.
[63]  Potu, B.K.; Rao, M.S.; Nampurath, G.K.; Chamallamudi, M.R.; Nayak, S.R.; Thomas, H. Anti-osteoporotic activity of the petroleum ether extract of Cissus quadrangularis Linn. in ovariectomized Wistar rats. Chang Gung Med. J. 2010, 33, 252–257.
[64]  Potu, B.K.; Nampurath, G.K.; Rao, M.S.; Bhat, K.M.R. Effect of Cissus quadrangularis Linn on the development of osteopenia induced by ovariectomy in rats. Clin. Ter. 2011, 162, 307–312.
[65]  Parisuthiman, D.; Singhatanadgit, W.; Dechatiwongse, T.; Koontongkaew, S. Cissus quadrangularis extract enhances biomineralization through up-regulation of MAPK-dependent alkaline phosphatase activity in osteoblasts. In Vitro Cell. Dev. Biol. Anim. 2009, 45, 194–200, doi:10.1007/s11626-008-9158-1.
[66]  Aswar, U.M.; Bhaskaran, S.; Mohan, V.; Bodhankar, S.L. Estrogenic activity of friedelin rich fraction (IND-HE) separated from Cissus quadrangularis and its effect on female sexual function. Pharmacogn. Res. 2010, 2, 138–145, doi:10.4103/0974-8490.65507.
[67]  Emongor, V. Safflower (Carthamus tinctorius L.) the underutilized and neglected crop: A review. Asian J. Plant Sci. 2010, 9, 299–306, doi:10.3923/ajps.2010.299.306.
[68]  Chavan, S.P.; Lokhande, V.H.; Nitnaware, K.M.; Nikam, T.D. Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl. Microbiol. Biotechnol. 2011, 89, 1701–1707, doi:10.1007/s00253-010-3014-4.
[69]  Huh, J.S.; Kang, J.H.; Yoo, Y.J.; Kim, C.S.; Cho, K.S.; Choi, S.H. The effect of safflower seed fraction extract on periodontal ligament fibroblast and MC3T3-E1 cell in vitro. J. Korean Acad. Periodontol. 2001, 31, 833–846.
[70]  Kim, S.T.; Jhon, G.J.; Lim, S.H.; Cho, K.S.; Kim, C.K.; Choi, S.H. The effect of safflower seed extract on the bone formation of calvarial bone model in Sprague Dawley rat. J. Korean Acad. Periodontol. 2000, 30, 835–850.
[71]  You, K.T.; Choi, K.S.; Yun, G.Y.; Kim, E.C.; You, H.K.; Shin, H.S. Healing after implantation of bone substitutes and safflower seeds feeding in rat calvarial defects. J. Korean Acad. Periodontol. 2000, 30, 91–103.
[72]  Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751.
[73]  Montgomery, K.S. Soy protein. J. Perinat. Educ. 2003, 12, 42–45.
[74]  Perut, F.; Montufar, E.B.; Ciapetti, G.; Santin, M.; Salvage, J.; Traykova, T.; Planell, J.A.; Ginebra, M.P.; Baldini, N. Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response. Acta Biomater. 2011, 7, 1780–1787, doi:10.1016/j.actbio.2010.12.012.
[75]  Murkies, A.L.; Wilcox, G.; Davis, S.R. Clinical review 92: Phytoestrogens. J. Clin. Endocrinol. Metab. 1998, 83, 297–303, doi:10.1210/jc.83.2.297.
[76]  Taku, K.; Melby, M.K.; Nishi, N.; Omori, T.; Kurzer, M.S. Soy isoflavones for osteoporosis: An evidence-based approach. Maturitas 2011, 70, 333–338, doi:10.1016/j.maturitas.2011.09.001.
[77]  Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Kuhnle, G.G.C.; Mulligan, A.A.; Touillaud, M.; Slimani, N.; Romieu, I.; Powell, N.; Tumino, R.; et al. Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Eur. J. Clin. Nutr. 2012.
[78]  Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 2001, 49, 1069–1086, doi:10.1021/jf0009246.
[79]  Santin, M.; Morris, C.; Standen, G.; Nicolais, L.; Ambrosio, L. A new class of bioactive and biodegradable soybean-based bone fillers. Biomacromolecules 2007, 8, 2706–2711, doi:10.1021/bm0703362.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133