An understanding of the climate conditions governing spatial variation in the reproductive performance of plants can provide important information about the factors characterizing plant community structure, especially in the context of climate change. This study focuses on the effect of climate on the sexual reproductive output of Dactylis glomerata L., a perennial grass species widely distributed throughout temperate regions. An indirect space-for-time substitution procedure was used. Sixty mountain populations of the same target species were surveyed along an elevation gradient, and then, a relevant climate model was used to infer a potential response to climate change over time. Within each population, information on the number of stems, seed number and seed mass were collected. Resource investment in reproduction (RIR) was quantified as seed number × seed mass. A clear variation was found in the reproductive performance of D. glomerata along the elevational gradient: RIR improved with increasing temperature. The best model included only one term: the maximum temperature of the warmest month. This study demonstrates that mountain ecosystems offer particularly good opportunities to study climate effects over relatively short distances and suggests that warming will enhance D. glomerata’s reproductive output throughout its elevational range. Furthermore, it can be hypothesized that a potential migration of D. glomerata toward higher altitudes may occur in response to accelerated climate change.
References
[1]
Graae, B.J.; de Frenne, P.; Kolb, A.; Brunet, J.; Chabrerie, O.; Verheyen, K.; Pepin, N.; Heinken, T.; Zobel, M.; Shevtsova, A.; et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 2012, 121, 3–19, doi:10.1111/j.1600-0706.2011.19694.x.
[2]
Wilson, S.D.; Nilsson, C. Arctic alpine vegetation change over 20 years. Glob. Change Biol. 2009, 15, 1676–1684, doi:10.1111/j.1365-2486.2009.01896.x.
[3]
De Frenne, P.; Kolb, A.; Verheyen, K.; Brunet, J.; Chabrerie, O.; Decocq, G.; Diekmann, M.; Eriksson, O.; Heinken, T.; Hermy, M.; et al. Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs. Glob. Ecol. Biogeogr. 2009, 18, 641–651, doi:10.1111/j.1466-8238.2009.00487.x.
Fukami, T.; Wardle, D.A. Long-term ecological dynamics: Reciprocal insights from natural and anthropogenic gradients. Proc. Roy. Soc. Lond. B Biol. Sci. 2005, 272, 2105–2115, doi:10.1098/rspb.2005.3277.
[6]
K?rner, C. The use of 'altitude' in ecological research. Trends Ecol. Evol. 2007, 22, 569–574, doi:10.1016/j.tree.2007.09.006.
[7]
Sherry, R.A.; Zhou, X.H.; Gu, S.L.; Arnone, J.A.; Schimel, D.S.; Verburg, P.S.; Wallace, L.L.; Luo, Y.Q. Divergence of reproductive phenology under climate warming. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 198–202.
[8]
Walker, M.D.; Wahren, C.H.; Hollister, R.D.; Henry, G.H.R.; Ahlquist, L.E.; Alatalo, J.M.; Bret-Harte, M.S.; Calef, M.P.; Callaghan, T.V.; Carroll, A.B.; et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 1342–1346.
[9]
Dormann, C.F.; Woodin, S.J. Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Funct. Ecol. 2002, 16, 4–17, doi:10.1046/j.0269-8463.2001.00596.x.
[10]
Rees, M. Trade-offs among dispersal strategies in British plants. Nature 1993, 366, 150–152.
[11]
Rees, M. Community structure in sand dune annuals: Is seed weight a key quantity? J. Ecol. 1995, 83, 857–863, doi:10.2307/2261422.
[12]
Guo, Q.F.; Brown, J.H.; Valone, T.J.; Kachman, S.D. Constraints of seed size on plant distribution and abundance. Ecology 2000, 81, 2149–2155, doi:10.1890/0012-9658(2000)081[2149:COSSOP]2.0.CO;2.
[13]
Leishman, M.R. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 2001, 93, 294–302.
[14]
Hedhly, A.; Hormaza, J.I.; Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009, 14, 30–36, doi:10.1016/j.tplants.2008.11.001.
[15]
De Frenne, P.; Brunet, J.; Shevtsova, A.; Kolb, A.; Graae, B.J.; Chabrerie, O.; Cousins, S.A.; Decocq, G.; de Schrijver, A.; Diekmann, M.; et al. Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Glob. Change Biol. 2011, 17, 3240–3253, doi:10.1111/j.1365-2486.2011.02449.x.
[16]
De Frenne, P.; Graae, B.J.; Kolb, A.; Brunet, J.; Chabrerie, O.; Cousins, S.A.O.; Decocq, G.; Dhondt, R.; Diekmann, M.; Eriksson, O.; et al. Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L. Forest Ecol. Manag. 2010, 259, 809–817, doi:10.1016/j.foreco.2009.04.038.
[17]
Dainese, M. Impact of land use intensity and temperature on the reproductive performance of Dactylis glomerata populations in the southeastern Alps. Plant Ecol. 2011, 212, 651–661, doi:10.1007/s11258-011-9902-6.
[18]
Hovenden, M.J.; Wills, K.E.; Chaplin, R.E.; Vander Schoor, J.K.; Williams, A.L.; Osanai, Y.U.I.; Newton, P.C.D. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob. Change Biol. 2008, 14, 1633–1641, doi:10.1111/j.1365-2486.2008.01597.x.
[19]
Worldclim. Available online: http://www.worldclim.org/ (acceseed on 1 July 2012).
[20]
Borrill, M. Temperate grasses. In Evolution of Crop Plants; Simmonds, N., Ed.; Longman: London, UK, 1976; pp. 137–142.
[21]
Beddows, A. Dactylis glomerata L. J. Ecol. 1959, 47, 223–239, doi:10.2307/2257254.
Moles, A.T.; Warton, D.I.; Warman, L.; Swenson, N.G.; Laffan, S.W.; Zanne, A.E.; Pitman, A.; Hemmings, F.A.; Leishman, M.R. Global patterns in plant height. J. Ecol. 2009, 97, 923–932.
[24]
Breza, L.C.; Souza, L.; Sanders, N.J.; Classen, A.T. Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species. Evol. Ecol. 2012, 2, 1151–1161, doi:10.1002/ece3.223.
[25]
HilleRisLambers, J.; Harpole, W.S.; Schnitzer, S.; Tilman, D.; Reich, P.B. CO2, nitrogen, and diversity differentially affect seed production of prairie plants. Ecology 2009, 90, 1810–1820, doi:10.1890/07-1351.1.
[26]
Rajaniemi, T.K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J. Ecol. 2002, 90, 316–324, doi:10.1046/j.1365-2745.2001.00662.x.
[27]
Benavides, R.; Montes, F.; Rubio, A.; Osoro, K. Geostatistical modelling of air temperature in a mountainous region of Northern Spain. Agr. Forest. Meteorol. 2007, 146, 173–188.
[28]
Pinheiro, J.; Bates, D. Mixed Effects Models in S and S-Plus; Springer: New York, NY, USA, 2000.
[29]
Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. R Development Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-102; R Foundation for Statistical Computing: Vienna, Austria, 2011.
[30]
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: http://www.R-project.org/ (acceseed on 16 January 2012).
[31]
Singer, J.; Willett, J. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence; Oxford University Press: Oxford, UK, 2003.
[32]
Burnham, K.; Anderson, D. Model Selection and Multimodel Inference, A Practical Information—Theoretic Approach; Springer: Berlin, Germany, 2002.
[33]
Barton, K. MuMIn: Multi-model inference. R package version 1.6.5. R Foundation for Statistical Computing: Vienna, Austria, 2011. Available online: http://CRAN.R-project.org/package=MuMIn (acceseed on 16 January 2012).
Murray, K.; Conner, M. Methods to quantify variable importance: Implications for the analysis of noisy ecological data. Ecology 2009, 90, 348–355, doi:10.1890/07-1929.1.
[36]
Walsh, C.; MacNally, R. hier.part: Hierarchical Partitioning. R Package Version 1.0-3; R Foundation for Statistical Computing: Vienna, Austria, 2008.
[37]
Bretagnolle, F.; Thompson, J.D.; Lumaret, R. The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid dactylis glomerata L. Ann. Bot. 1995, 76, 607–615, doi:10.1006/anbo.1995.1138.
[38]
McKee, J.; Richards, A.J. Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol. 1996, 133, 233–243, doi:10.1111/j.1469-8137.1996.tb01890.x.
[39]
Vera, M.L. Effects of altitude and seed size on germination and seedling survival of heathland plants in North Spain. Plant Ecol. 1997, 133, 101–106, doi:10.1023/A:1009729201384.
[40]
Kidson, R.; Westoby, M. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 2000, 125, 11–17, doi:10.1007/PL00008882.