Single crystals of ternary chalcogenides with the composition BaLu 2 Ch 4 ( Ch = S, Se and Te; orthorhombic, Pnma; a = 1211.4–1353.6, b = 395.6–438.5, c = 1427.8–1593.6 pm) could be obtained after attempts to synthesize ternary lutetium(III) nitride chalcogenides using the elements (Lu and Ch) along with BaN 3Cl as a nitrogen source. Their crystal structures are isotypic with CaFe 2O 4 containing two sorts of {[Lu Ch Ch] 8–} chains built up of edge-linked [(Lu1)( Ch2)( Ch3) 3( Ch4) 2] 9– and [(Lu2)( Ch1) 3( Ch2) 2( Ch4)] 9– octahedra, respectively. A further interconnection via the chalcogenide anions ( Ch3) 2– and ( Ch1) 2– leads to double chains, where either (Lu1) 3+ or (Lu2) 3+ coordinates these chalcogenide anions as well. The three-dimensional framework {[Lu 2 Ch 4] 2–} emerges from the corner-linkage of the two kinds of double chains forming large channels apt to take up the Ba 2+ cations. These divalent cations exhibit eight contacts to chalcogenide anions resulting in the formation of bicapped trigonal prisms [Ba Ch 8] 14–.
References
[1]
Lissner, F.; Schleid, Th. M3NS3, die ersten Nitridsulfide der Lanthanide (M = La–Nd, Sm). Z. Anorg. Allg. Chem. 1993, 619, 1771–1776.
[2]
Lissner, F.; Schleid, Th. Ce3NSe3: Ein Cer(III)-Nitridselenid mit eckenverknüpften [NCe4]9+-Tetraedern. Z. Anorg. Allg. Chem. 2004, 630, 1741.
[3]
Lissner, F.; Meyer, M.; Kremer, R.K.; Schleid, Th. M3NS3 (M = La?Nd, Sm, Gd?Dy): Struktur und Magnetismus von 3:1:3-Typ-Nitridsulfiden dreiwertiger Lanthanide. Z. Anorg. Allg. Chem. 2006, 632, 1995–2002.
[4]
Lissner, F.; Schleid, Th. Lanthanido ammonium cations [NM4]9+ as main structural features in lanthanide (III) nitride chalcogenides and their derivatives. J. Alloys Compounds 2008, 451, 610–616.
[5]
Lissner, F.; Schleid, Th. Die nicht-isotypen Nitridselenide Dy3NSe3 und Ho3NSe3: Ketten und Dimere. Z. Anorg. Allg. Chem. 2009, 635, 815–821.
[6]
Lissner, F.; Schleid, Th. Ein neues Samariumnitridsulfid: Sm4N2S3. Z. Anorg. Allg. Chem. 1994, 620, 2003–2007.
[7]
Lissner, F.; Schleid, Th. Nd4N2Se3 und Tb4N2Se3: Zwei nicht-isotype Lanthanoid(III)- Nitridselenide. Z. Anorg. Allg. Chem. 2003, 629, 1027–1032.
[8]
Lissner, F.; Schleid, Th. Pr4N2S3 und Pr4N2Se3: Zwei nicht-isotype Praseodymium(III)- Nitridchalkogenide. Z. Anorg. Allg. Chem. 2005, 631, 427–432.
[9]
Lissner, F.; Schleid, Th. M4N2Te3 (M = La?Nd): Die ersten Nitridtelluride der dreiwertigen Lanthanide. Z. Anorg. Allg. Chem. 2005, 631, 1119–1124.
[10]
Lissner, F.; Schleid, Th. La4N2S3: Ein neues Nitridsulfid des Lanthans mit beispielloser Kristallstruktur. Z. Anorg. Allg. Chem. 2006, 632, 1167–1172.
[11]
Blaschkowski, B.; Balzer, G.; Keller, H.L.; Schleid, Th. BaN3Cl: Synthesis, Crystal Structure, Vibrational Spectra and Thermal Decomposition of Barium Azide Chloride. Z. Anorg. Allg. Chem. 2008, 634, 2276–2280.
[12]
Flahaut, J.; Domange, L.; Patrie, M. Combinaisons formées par les sulfures des elements du groupe des terres rares. Etude cristallographique des phases ayant le type structural du phosphure de thorium Th3P4. Bull. Soc. Chim. Fr. 1962, 1962, 2048–2054.
[13]
Patrie, M.; Flahaut, J.; Domange, L. Sur une nouvelle serie de spinelles soufres, contenant des terres rares ou du scandium. C. R. Hebd. Seances Acad. Sci. 1964, 258, 2585–2586.
[14]
Guittard, M.; Flahaut, J.; Souleau, C.; Farsam, H. Sur une nouvelle serie de spinelles selenies du terres rares, de l'yttrium et du scandium. C. R. Hebd. Seances Acad. Sci. 1964, 258, 2847–2849.
[15]
Fujii, H. Crystallographic, magnetic and electric properties of rare earth chalcogenide spinels. J. Sci. Hiroshima Univ. Ser. A-I 1972, 36, 67–75.
[16]
Tomas, A.; Brossard, L.; Guittard, M. Structural Studies by X-Ray Diffraction and Moessbauer Spectroscopy of Cubic FeYb2S4 and FeLu2S4. J. Solid State Chem. 1980, 34, 11–16.
[17]
Pawlak, L.; Duczmal, M. Magnetic and structural properties of iron and manganese lanthanide spinels. J. Alloys Compounds 1992, 184, 203–209.
[18]
Müller-Buschbaum, H.K.; von Schenk, R. Untersuchungen an SrYb2O4, CaYb2O4 und CaLu2O4: Ein Beitrag zur Kristallstruktur des Calciumferrat(III)-Typs. Z. Anorg. Allg. Chem. 1970, 377, 70–78.
[19]
Rodier, N.; Tien, V. Structure du sulfure mixte de calcium et de lutetium CaLu2S4. C. R. Hebd. Seances Acad. Sci. 1977, 284, 909–911.
[20]
Gulay, L.D.; Wolcyrz, M.; Pietraszko, A.; Olekseyuk, I.D. Investigations of the Tm2Se3-Cu2Se- PbSe and Lu2Se3-Cu2Se-PbSe systems at 870 K. Pol. J. Chem. 2006, 80, 1703–1704.
[21]
Gengbang, J.; Sang, C.E.; Guertin, R.P.; Albrecht-Schmitt, T.E. An investigation of structural parameters and magnetic and optical properties of EuLn2Q4 (Ln = Tb-Lu, Q = S, Se). J. Solid State Chem. 2008, 181, 14–19.
[22]
Gulay, L.D.; Daszkiewicz, M.; Shemet, V.Ya.; Pietraszko, A. Crystal structure of the R2PbS4 (R = Yb and Lu) compounds. J. Alloys Compounds 2008, 453, 143–146.
[23]
Hirose, K.; Doi, Y.; Hinatsu, Y. Magnetic properties of EuLn2O4 (Ln = rare earth). J. Solid State Chem. 2009, 182, 1624–1630.
[24]
Ishida, Y.; Kinomura, N.; Miyamoto, Y.; Kume, S.; Koizumi, M. Syntheses of EuLn2S4 and SrLn2S4 (Ln = Lu, Yb, Er, Y) with Th3P4 type structure. High Pressure Sci. Technol. 1979, 1, 1026–1032.
[25]
Lowe-Ma, C.K.; Vanderah, T.A.; Albrecht-Schmitt, T.E. The ternary yttrium sulfides, CaY2S4, SrY2S4, and BaY2S4: structures and properties. J. Solid State Chem. 1995, 117, 363–372.
Bugaris, D.E.; Ibers, J.A. BaLn2Se4 (Ln = Er, Tm and Yb). Acta Crystallogr. 2009, C65, i60–i62.
[28]
Narducci, A.A.; Yang, Y.; Digman, M.A.; Sipes, A.B.; Ibers, J.A. An investigation of rare-earth telluride system BaLn2Te4 (Ln = Sm-Tm, Y): syntheses, crystal structures, and magnetic properties. J. Alloys Compounds 2000, 303-304, 432–439.
[29]
Fischer, R.X.; Tillmanns, E. The equivalent isotropic displacement factor. Acta Crystallogr. 1988, C44, 775–776.
[30]
Schleid, Th.; Lissner, F. Einkristalle von A-Nd2S3, U-Ho2S3, D-Er2S3 und E-Lu2S3 durch Oxidation reduzierter Chloride der Lanthanide mit Schwefel. Z. Anorg. Allg. Chem. 1999, 625, 1700–1706.
[31]
Folchnandt, M.; Schneck, C.; Schleid, Th. über Sesquiselenide der Lanthanoide: Einkristalle von Ce2Se3 im C-, Gd2Se3 im U- und Lu2Se3 im Z-Typ. Z. Anorg. Allg. Chem. 2004, 630, 149–155.
[32]
Liu, Y.; Chen, L.; Wu, L.; Chan, G.H.; van Duyne, R.P. Synthesis, crystal and band structures, and magnetic and optical properties of new CsLnCdTe3 (Ln = La, Pr, Nd, Sm, Gd?Tm, and Lu). Inorg. Chem. 2008, 47, 855–862.
[33]
Babo, J.-M. Syntheses and Crystal Structures of Quaternary Chalcogenides Containing Rare-Earth and Coinage Metals. PhD Thesis, University of Stuttgart, Germany, 2010.
[34]
Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767.
[35]
Biltz, W. Raumchemie der festen Stoffe; Verlag von Leopold Voss: Leipzig, Germany, 1934; pp. 181–195.
[36]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.
[37]
Herrendorf, W.; B?rnighausen, H. HABITUS: A Program for the Optimization of the Crystal Shape for Numerical Absorption Correction in X-SHAPE, version 1.06; Fa. Stoe, Darmstadt: Karlsruhe, Germany, 1996.
[38]
Hahn, Th.; Wilson, A.J.C. International Tables for Crystallography, 2nd ed. ed.; Kluwer Academic Publishers: Boston, MA, USA, 1992. volume C.