The syntheses and single-crystal structures of Ba 2(C 2O 4)(H 2PO 3) 2 ( 1) and C 2H 10N 2·Ba(H 2O) 2(HC 2O 4) 4 ( 2) are described. Compound 1 is a three-dimensional mixed-anion framework containing BaO 9 coordination polyhedra, which approximate to monocapped square anti-prisms: the connectivity of the BaO 9 units via edges and triangular faces leads to a sheet structure. The oxalate ion in 1 is substantially twisted about its C–C bond [dihedral angle between the CO 2 groups = 33.8 (3)°]. Compound 2 is a molecular salt containing ethylenediammonium dications and [Ba(HC 2O 4) 4(H 2O) 2] 2– dianions, which are linked by O–HLO and N–HLO hydrogen bonds. The BaO 10 coordination polyhedron can be described as a distorted pentagonal anti-prism. Crystal data: 1 (C 2H 4Ba 2O 10P 2), M r = 524.68, monoclinic, C2/ c (No. 15), Z = 4, a = 12.3829 (3) ?, b = 7.9124 (2) ?, c = 11.0858 (3) ?, b = 114.788 (2)°, V = 986.10 (4) ? 3, R( F) = 0.016, wR( F 2) = 0.040. 2 (C 10H 18BaN 2O 10), M r = 591.60, monoclinic, C2/ m (No. 12), Z = 2, a = 12.7393 (7) ?, b = 13.0111 (7) ?, c = 5.6050 (3) ?, b = 104.208 (4)°, V = 900.62 (8) ? 3, R( F) = 0.027, wR( F 2) = 0.054.
References
[1]
Mutin, J.-C.; Dusausoy, Y.; Protas, J. Structural description of endothermic decompositions in the form solid-1 → solid-2 + gas 1. Crystal structure of barium oxalate, 2BaC2O4·H2O. J. So/id State Chem. 1981, 36, 356–364.
[2]
Mutin, J.-C.; Aubry, A.; Bertrand, G.; Joly, E.; Protas, J. Determination of crystal-structure of BaC2O4·H2O. C. R. Acad. Sci. (Paris), Ser. C. 1974, 278, 1001–1004.
[3]
Mutin, J.-C.; Courtois, A.; Bertrand, G.; Protas, J.; Watelle-Marion, G. Determination of crystal-structure of BaC2O4·2H2O. C. R. Acad. Sci. (Paris), Ser. C. 1971, 273, 1512.
[4]
Neder, R.; Burghammer, M.; Schulz, H.; Christensen, A.N.; Krane, H.G.; Bell, A.M.T.; Hewat, A.W.; Altomare, A. Crystal structure determination of BaC2O4·3.5H2O/D2O. Zeit. Kristallogr. 1997, 212, 305–309.
[5]
Borel, C.; Ghazzali, M.; Langer, V.; Ohrstrom, L. Network analysis of barium oxalates Ba(C2O4)m(HC2O4)n(H2C2O4)p(H2O)q, including the new, uniform, five-connected loh net. Inorg. Chem. Commun. 2009, 12, 105–108.
[6]
Mutin, J.-C.; Watelle, G.; Dusausoy, Y. Study of a lacunary solid phase I—thermodynamic and crystallographic characteristics of its formation. J. Solid State Chem. 1979, 27, 407–421.
[7]
Mutin, J.-C.; Watelle, G. Study of a lacunary solid phase II—morphological and kinetic characteristics of its formation. J. Solid State Chem. 1979, 28, 1–12.
[8]
Jung, W.-S.; Min, B.-K.; Park, J.; Yoon, D.-H. Formation mechanism of barium titanate by thermal decomposition of barium titanyl oxalate. Ceram. Int. 2011, 37, 669–672.
[9]
Kosanke, K.; Kosanke, B.J.; von Maltitz, I.; Sturman, B.; Shimizu, T.; Wilson, M.A.; Kubota, N.; Jennings-White, C.; Chapman, D. Pyrotechnic Chemistry; Journal of Pyrotechnics, Inc.: Whitewater, CO, USA, 2004. Chapter 14; p. 10.
[10]
Mandal, S.; Pati, S.K.; Green, M.A.; Natarajan, S. Inorganic–organic hybrid compounds: synthesis, structure, and magnetic properties of the first organically templated iron oxalate-phosphite, [C4N2H12[Fe4II(HPO3)2(C2O4)3], possessing infinite Fe–O–Fe chains. Chem. Mater. 2005, 17, 2912–2917.
[11]
Li, H.; Zhang, L.; Liu, L.; Jiang, T.; Yu, Y.; Li, G.; Huo, Q.; Liu, Y. Organic template-directed indium phosphite-oxalate hybrid material: synthesis and characterization of a novel 3D [C6H14N2][In2(HPO3)3(C2O4)] compound with intersecting channels. Inorg. Chem. Commun. 2009, 12, 1020–1023.
[12]
Zhu, Y.; Sun, Z.; Zhao, Y.; Zhang, J.; Lu, X.; Zhang, N.; Liu, L.; Tong, F. Synthesis, crystal structures and luminescence properties of lanthanide oxalatophosphonates with a three dimensional framework structure. New J. Chem. 2009, 33, 119–124.
[13]
Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Cryst. 1985, B41, 244–247.
[14]
Ruiz-Martínez, A.; Casanova, D.; Alvarez, S. Polyhedral structures with an odd number of vertices: nine-atom clusters and supramolecular architectures. Dalton Trans. 2008, 2583–2591.
[15]
Corbridge, D.E.C. The crystal structure of magnesium phosphite hexahydrate, MgHPO3·6H2O. Acta Cryst. 1956, 9, 991–994.
[16]
Powell, D.R.; Smith, S.K.; Farrar, T.C.; Ross, F.K. Neutron and X-ray diffraction study of magnesium phosphite hexahydrate, [Mg(H2O)6]2+[HPO3]2–. Acta Cryst. 1994, C50, 342–346.
[17]
Dewar, M.J.S.; Zheng, Y.-J. Structure of the oxalate ion. J. Mol. Struct. Theochem 1990, 209, 157–162.
[18]
Robertson, J.H. Ammonium oxalate monohydrate: structure refinement at 30 K. Acta Cryst. 1965, 18, 410–417.
[19]
Robertson, J.H. Enantiomorphism of the oxalate ion in ammonium oxalate monohydrate. Acta Cryst. 1965, 18, 417–419.
[20]
Green, E.A.; Daux, W.L.; Smith, G.M.; Wudl, F. Coordination complexes of groups 1 and 2. Potassium O,O′-catecholdiacetate. J. Am. Chem. Soc. 1975, 97, 6689–6692.
[21]
Fernandes, N.G.; Tellgren, R. Ammonium hydrogen oxalate hemihydrate: X-ray and neutron diffraction studies. Acta Cryst. 1989, C45, 499–504.
[22]
Scott, K.J.; Zhang, Y.; Clearfield, A. The synthesis and characterization of lanthanum phosphite phenylphosphonate mixed derivatives. Polyhedron 1994, 13, 1291–1300.
[23]
Trpkovska, M.; ?optrajanov, B.; Pejov, L. Reinvestigation of the infrared spectra of calcium oxalate monohydrate and its partially deuterated analogues. Bull. Chem. Technol. Macedonia 2002, 21, 111–116.
[24]
Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology; Carter, C.W., Jr., Sweet, R.M., Eds.; Academic Press: New York, NY, USA, 1997; Volume 276. Macromolecular Crystallography, part A, pp. 307–326.
[25]
Sheldrick, G.M. SADABS: Program for Empirical Absorption Correction of Area Detector Data; University of G?ttingen: G?ttingen, Germany, 1996.
[26]
Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.
[27]
Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155.
[28]
Allen, F.H.; Motherwell, W.D.S. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Cryst. 2002, B58, 407–422.