Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.
References
[1]
Mezger, P.R.; Creugers, N.H. Titanium nitride coatings in clinical dentistry. J. Dent. 1992, 20, 342–344, doi:10.1016/0300-5712(92)90021-4.
[2]
Scarano, A.; Piattelli, M.; Vrespa, G.; Caputi, S.; Piattelli, A. Bacterial adhesion on titanium nitride-coated and uncoated implants: An in vivo human study. J. Oral Implant. 2003, 29, 80–85, doi:10.1563/1548-1336(2003)029<0080:BAOTNA>2.3.CO;2.
[3]
Durual, S.; Pernet, F.; Rieder, P.; Mekki, M.; Cattani-Lorente, M.; Wiskott, H.W. Titanium nitride oxide coating on rough titanium stimulates the proliferation of human primary osteoblasts. Clin. Oral Implant. Res. 2011, 22, 552–559, doi:10.1111/j.1600-0501.2010.02033.x.
[4]
Annunziata, M.; Guida, L.; Perillo, L.; Aversa, R.; Passaro, I.; Oliva, A. Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J. Mater. Sci. Mater. Med. 2008, 19, 3585–3591, doi:10.1007/s10856-008-3514-2.
[5]
Scarano, A.; Piattelli, M.; Vrespa, G.; Petrone, G.; Iezzi, G.; Piattelli, A. Bone healing around titanium and titanium nitride-coated dental implants with three surfaces: An experimental study in rats. Clin. Implant Dent. Relat. Res. 2003, 5, 103–111, doi:10.1111/j.1708-8208.2003.tb00191.x.
[6]
Burstone, C.J.; Farzin-Nia, F. Production of low-friction and colored TMA by ion implantation. J. Clin. Orthod. 1995, 29, 453–461.
[7]
Bonaccorso, A.; Tripi, T.R.; Rondelli, G.; Condorelli, G.G.; Cantatore, G.; Sch?fer, E. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic acid and sodium chloride solutions. J. Endod. 2008, 34, 208–211, doi:10.1016/j.joen.2007.11.012.
[8]
Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 2001, 22, 2043–2048, doi:10.1016/S0142-9612(00)00392-6.
[9]
Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K.; Hirayama, A. Influence of surface modifications to titanium on oral bacterial adhesion in vitro. J. Biomed. Mater. Res. 2000, 2, 388–394.
[10]
Satomi, K.; Akagawa, Y.; Nikai, H.; Tsuru, H. Tissue response to implanted ceramic-coated titanium alloys in rats. J. Oral Rehabil. 1988, 15, 339–345, doi:10.1111/j.1365-2842.1988.tb00166.x.
[11]
Kao, C.T.; Guo, J.U.; Huang, T.H. Comparison of friction force between corroded and noncorroded titanium nitride plating of metal brackets. Am. J. Orthod. Dentofac. Orthoped. 2011, 139, 594–600, doi:10.1016/j.ajodo.2009.06.034.
[12]
Kao, C.T.; Ding, S.J.; Chen, Y.C.; Huang, T.H. The anticorrosion ability of titanium nitride (TiN) plating on an orthodontic metal bracket and its biocompatibility. J. Biomed. Mater. Res. 2002, 63, 786–792, doi:10.1002/jbm.10484.
[13]
Hai, K.; Sawase, T.; Matsumura, H.; Atsuta, M.; Baba, K.; Hatada, R. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride. J. Oral Rehabil. 2000, 27, 361–366, doi:10.1046/j.1365-2842.2000.00520.x.
[14]
Taira, Y.; Hai, K.; Matsumura, H.; Atsuta, M. Adhesive bonding of titanium nitride-plated stainless steel for magnetic attachments. Eur. J. Oral Sci. 2001, 109, 204–207, doi:10.1034/j.1600-0722.2001.00023.x.
[15]
Mengel, R.; Meer, C.; Flores-de-Jacoby, L. The treatment of uncoated and titanium nitride-coated abutments with different instruments. Int. J. Oral Maxillofac. Implant. 2004, 19, 232–238.
[16]
Annunziata, M.; Oliva, A.; Basile, M.A.; Giordano, M.; Mazzola, N.; Rizzo, A.; Lanza, A.; Guida, L. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J. Dent. 2011, 39, 720–728, doi:10.1016/j.jdent.2011.08.003.
[17]
Sch?fer, E. Effect of physical vapor deposition on cutting efficiency of nickel-titanium files. J. Endod. 2002, 28, 800–802, doi:10.1097/00004770-200212000-00002.
[18]
Sch?fer, E. Effect of sterilization on the cutting efficiency of PVD-coated nickel-titanium endodontic instruments. Int. Endod. J. 2002, 35, 867–872, doi:10.1046/j.1365-2591.2002.00586.x.
[19]
Wu, J.C.; Lai, L.C.; Sheets, C.G.; Earthman, J.; Newcomb, R. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings. J. Prosthet. Dent. 2011, 105, 403–409, doi:10.1016/S0022-3913(11)60083-8.
[20]
Chung, K.H.; Duh, J.G.; Shin, D.; Cagna, D.R.; Cronin, R.J., Jr. Characteristics and porcelain bond strength of (Ti,Al)N coating on dental alloys. J. Biomed. Mater. Res. 2002, 63, 516–521, doi:10.1002/jbm.10307.
[21]
Kurt, M.; Külünk, T.; Ural, C.; Külünk, S.; Dani?man, S.; Sava?, S. The effect of different surface treatments on retention of cement retained implant supported restorations. J. Oral Implant. 2010.
[22]
Gr?ssner-Schreiber, B.; Griepentrog, M.; Haustein, I.; Müller, W.D.; Lange, K.P.; Briedigkeit, H.; G?bel, U.B. Plaque formation on surface modified dental implants: An in vitro study. Clin. Oral Implant. Res. 2001, 12, 543–551, doi:10.1034/j.1600-0501.2001.120601.x.
[23]
Groessner-Schreiber, B.; Hannig, M.; Dück, A.; Griepentrog, M.; Wenderoth, D.F. Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities? Eur. J. Oral Sci. 2004, 112, 516–522, doi:10.1111/j.1600-0722.2004.00171.x.
[24]
Groessner-Schreiber, B.; Neubert, A.; Müller, W.D.; Hopp, M.; Griepentrog, M.; Lange, K.P. Fibroblast growth on surface-modified dental implants: An in vitro study. J. Biomed. Mater. Res. A 2003, 64, 591–599.
[25]
Gr?ssner-Schreiber, B.; Herzog, M.; Hedderich, J.; Dück, A.; Hannig, M.; Griepentrog, M. Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: An in vitro study. Clin. Oral Implant. Res. 2006, 17, 736–745, doi:10.1111/j.1600-0501.2006.01277.x.
[26]
Tanaka, K.; Kimoto, K.; Sawada, T.; Toyoda, M. Shear bond strength of veneering composite resin to titanium nitride coating alloy deposited by radiofrequency sputtering. J. Dent. 2006, 34, 277–282, doi:10.1016/j.jdent.2005.07.002.
[27]
Chien, C.C.; Liu, K.T.; Duh, J.G.; Chang, K.W.; Chung, K.H. Effect of nitride film coatings on cell compatibility. Dent. Mater. 2008, 24, 986–993, doi:10.1016/j.dental.2007.11.020.
[28]
Tripi, T.R.; Bonaccorso, A.; Rapisarda, E.; Tripi, V.; Condorelli, G.G.; Marino, R.; Fragalà, I. Depositions of nitrogen on NiTi instruments. J. Endod. 2002, 28, 497–500, doi:10.1097/00004770-200207000-00001.
[29]
Endo, K.; Sachdeva, R.; Araki, Y.; Ohno, H. Effects of titanium nitride coatings on surface and corrosion characteristics of Ni-Ti alloy. Dent. Mater. J. 1994, 13, 228–239, doi:10.4012/dmj.13.228.
[30]
Oshida, Y.; Hashem, A. Titanium-porcelain system Part I: Oxidation kinetics of nitrided pure titanium, simulated to porcelain firing process. Biomed. Mater. Eng. 1993, 3, 185–198.
[31]
Lim, H.P.; Kim, J.H.; Lee, K.M.; Park, S.W. Fracture load of titanium crowns coated with gold or titanium nitride and bonded to low-fusing porcelain. J. Prosthet. Dent. 2011, 10, 164–170.
[32]
Alves-Claro, A.P.; Claro, F.A.; Uzumaki, E.T. Wear resistance of nickel-titanium endodontic files after surface treatment. J. Mater. Sci. Mater. Med. 2008, 19, 3273–3277, doi:10.1007/s10856-008-3439-9.
[33]
Iijima, M.; Yuasa, T.; Endo, K.; Muguruma, T.; Ohno, H.; Mizoguchi, I. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions. Dent. Mater. J. 2010, 29, 53–58, doi:10.4012/dmj.2009-069.
[34]
Li, U.M.; Iijima, M.; Endo, K.; Brantley, W.A.; Alapati, S.B.; Lin, C.P. Application of plasma immersion ion implantation for surface modification of nickel-titanium rotary instruments. Dent. Mater. J. 2007, 26, 467–473, doi:10.4012/dmj.26.467.
[35]
Rapisarda, E.; Bonaccorso, A.; Tripi, T.R.; Fragalk, I.; Condorelli, G.G. The effect of surface treatments of nickel-titanium files on wear and cutting efficiency. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2000, 89, 363–368, doi:10.1016/S1079-2104(00)70103-X.
[36]
Gavini, G.; Pessoa, O.F.; Barletta, F.B.; Vasconcellos, M.A.; Caldeira, C.L. Cyclic fatigue resistance of rotary nickel-titanium instruments submitted to nitrogen ion implantation. J. Endod. 2010, 36, 1183–1186, doi:10.1016/j.joen.2010.03.032.
[37]
Wolle, C.F.; Vasconcellos, M.A.; Hinrichs, R.; Becker, A.N.; Barletta, F.B. The effect of argon and nitrogen ion implantation on nickel-titanium rotary instruments. J. Endod. 2009, 35, 1558–1562, doi:10.1016/j.joen.2009.07.023.
[38]
Catledge, S.A.; Vohra, Y.K.; Bellis, S.L.; Sawyer, A.A. Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J. Nanosci. Nanotechnol. 2004, 4, 986–989, doi:10.1166/jnn.2004.137.
[39]
De Maeztu, M.A.; Alava, J.I.; Gay-Escoda, C. Ion implantation: Surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants. Clin. Oral Implant. Res. 2003, 14, 57–62, doi:10.1034/j.1600-0501.2003.140108.x.
[40]
Kusy, R.P.; Tobin, E.J.; Whitley, J.Q.; Sioshansi, P. Frictional coefficients of ion-implanted alumina against ion-implanted beta-titanium in the low load, low velocity, single pass regime. Dent. Mater. 1992, 8, 167–172, doi:10.1016/0109-5641(92)90076-O.
[41]
Rapisarda, E.; Bonaccorso, A.; Tripi, T.R.; Condorelli, G.G.; Torrisi, L. Wear of nickel-titanium endodontic instruments evaluated by scanning electron microscopy: Effect of ion implantation. J. Endod. 2001, 27, 588–592, doi:10.1097/00004770-200109000-00009.
[42]
Sawase, T.; Yoshida, K.; Taira, Y.; Kamada, K.; Atsuta, M.; Baba, K. Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition. J. Oral Rehabil. 2005, 32, 151–157, doi:10.1111/j.1365-2842.2004.01382.x.
[43]
Tamura, Y.; Yokoyama, A.; Watari, F.; Kawasaki, T. Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials. Dent. Mater. J. 2002, 21, 355–372, doi:10.4012/dmj.21.355.
[44]
Gil, F.J.; Solano, E.; Campos, A.; Boccio, F.; Sáez, I.; Alfonso, M.V.; Planell, J.A. Improvement of the friction behaviour of NiTi orthodontic archwires by nitrogen diffusion. Biomed. Mater. Eng. 1998, 8, 335–342.
[45]
Gil, F.J.; Solano, E.; Mendoza, A.; Pena, J. Inhibition of Ni release from NiTi and NiTiCu orthodontic archwires by nitrogen diffusion treatment. J. Appl. Biomater. Biomech. 2004, 2, 151–155.
[46]
Tripi, T.R.; Bonaccorso, A.; Condorelli, G.G. Fabrication of hard coatings on NiTi instruments. J. Endod. 2003, 29, 132–134, doi:10.1097/00004770-200302000-00011.
[47]
Alsabeeha, N.H.; Swain, M.V.; Payne, A.G. Clinical performance and material properties of single-implant overdenture attachment systems. Int. J. Prosthodont. 2011, 24, 247–254.
[48]
Yi, K.J.; Kim, S.G.; Moon, S.Y.; Lim, S.C.; Son, J.S.; Kim, C.G.; Chung, K. Vertical distraction osteogenesis using a titanium nitride-coated distractor. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, e5–e9.
[49]
Abi Nader, S.; de Souza, R.F.; Fortin, D.; de Koninck, L.; Fromentin, O.; Albuquerque, R.F., Jr. Effect of simulated masticatory loading on the retention of stud attachments for implant overdentures. J. Oral Rehabil. 2011, 38, 157–164, doi:10.1111/j.1365-2842.2010.02145.x.
[50]
Assun??o, W.G.; Delben, J.A.; Tabata, L.F.; Bar?o, V.A.; Gomes, E.A.; Garcia, I.R., Jr. Preload evaluation of different screws in external hexagon joint. Implant Dent. 2012, 21, 46–50, doi:10.1097/ID.0b013e31823fcbce.
[51]
Wichelhaus, A.; Geserick, M.; Hibst, R.; Sander, F.G. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. Dent. Mater. 2005, 21, 938–945, doi:10.1016/j.dental.2004.11.011.
[52]
D’Antò, V.; Rongo, R.; Ametrano, G.; Spagnuolo, G.; Manzo, P.; Martina, R.; Paduano, S.; Valletta, R. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy. Angle Orthod. 2012.
[53]
Husmann, P.; Bourauel, C.; Wessinger, M.; J?ger, A. The frictional behavior of coated guiding archwires. J. Orofac. Orthop. 2002, 63, 199–211, doi:10.1007/s00056-002-0009-5.
[54]
Kusy, R.P.; Whitley, J.Q.; de Araújo Gurgel, J. Comparisons of surface roughnesses and sliding resistances of 6 titanium-based or TMA-type archwires. Am. J. Orthod. Dentofac. 2004, 126, 589–603, doi:10.1016/j.ajodo.2003.09.034.
[55]
Cash, A.; Curtis, R.; Garrigia-Majo, D.; McDonald, F. A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy archwires in stainless steel brackets. Eur. J. Orthodont. 2004, 26, 105–111, doi:10.1093/ejo/26.1.105.
[56]
Neumann, P.; Bourauel, C.; J?ger, A. Corrosion and permanent fracture resistance of coated and conventional orthodontic wires. J. Mater. Sci. Mater. Med. 2002, 13, 141–147, doi:10.1023/A:1013831011241.
[57]
Peitsch, T.; Klocke, A.; Kahl-Nieke, B.; Prymak, O.; Epple, M. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation. J. Biomed. Mater. Res. A 2007, 82, 731–739.
[58]
Kim, H.; Johnson, J.W. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod. 1999, 69, 39–44.
[59]
Schuster, G.; Reichle, R.; Bauer, R.R.; Schopf, P.M. Allergies induced by orthodontic alloys: Incidence and impact on treatment-Results of a survey in private orthodontic offices in the Federal State of Hesse, Germany. J. Orofac. Orthop. 2004, 65, 48–59, doi:10.1007/s00056-004-0312-4.
[60]
Pernier, C.; Grosgogeat, B.; Ponsonnet, L.; Benay, G.; Lissac, M. Influence of autoclave sterilization on the surface parameters and mechanical properties of six orthodontic wires. Eur. J. Orthodont. 2005, 27, 72–81, doi:10.1093/ejo/cjh076.
[61]
Ryan, R.; Walker, G.; Freeman, K.; Cisneros, G.J. The effects of ion implantation on rate of tooth movement: An in vitro model. Am. J. Orthod. Dentofac. 1997, 112, 64–68, doi:10.1016/S0889-5406(97)70275-0.
[62]
Cobb, N.W.; Kula, K.S.; Phillips, C.; Proffit, W.R. Efficiency of multi-strand steel, superelastic Ni-Ti and ion-implanted Ni-Ti archwires for initial alignment. Clin. Orthod. Res. 1998, 1, 12–19.
[63]
Kula, K.; Phillips, C.; Gibilaro, A.; Proffit, W.R. Effect of ion implantation of TMA archwires on the rate of orthodontic sliding space closure. Am. J. Orthod. Dentofac. 1998, 114, 577–580, doi:10.1016/S0889-5406(98)70177-5.
[64]
Sisera, M.; Hofer, D.J.; Sener, B.; Attin, T.; Schmidlin, P.R. In vitro evaluation of three curettes with edge retention technology after extended use. Schweiz Monatsschr Zahnmed. 2009, 119, 1200–1208.
[65]
Aspriello, S.D.; Piemontese, M.; Levrini, L.; Sauro, S. Ultramorphology of the root surface subsequent to hand-ultrasonic simultaneous instrumentation during non-surgical periodontal treatments: An in vitro study. J. Appl. Oral Sci. 2011, 19, 74–81, doi:10.1590/S1678-77572011000100015.
[66]
Steele, J.G.; McCabe, J.F.; Barnes, I.E. Properties of a titanium nitride coating for dental instruments. J. Dent. 1991, 19, 226–229, doi:10.1016/0300-5712(91)90123-G.
[67]
Rawlings, R.D.; Robinson, P.B.; Rogers, P.S. The durability of ceramic coated dental instruments. Eur. J. Prosthodont. Restor. Dent. 1995, 3, 211–216.
[68]
Jackson, M.J.; Sein, H.; Ahmed, W.; Woodwards, R. Novel diamond-coated tools for dental drilling applications. J. Med. Eng. Technol. 2007, 31, 81–93, doi:10.1080/03091900500217489.
[69]
Andreasen, G.F.; Hilleman, T.B. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J. Am. Dent. Assoc. 1971, 82, 1373–1375.
[70]
Goldberg, J.; Burstone, C.J. An evaluation of beta titanium alloys for use in orthodontic appliances. J. Dent. Res. 1979, 58, 593–599, doi:10.1177/00220345790580020901.
[71]
Walia, H.; Brantley, W.A.; Gerstein, H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J. Endod. 1988, 14, 346–351, doi:10.1016/S0099-2399(88)80196-1.