全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cancers  2011 

Progress in Nanotechnology Based Approaches to Enhance the Potential of Chemopreventive Agents

DOI: 10.3390/cancers3010428

Keywords: chemoprevention, nanotechnology, nanochemoprevention

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cancer chemoprevention is defined as the use of natural agents to suppress, reverse or prevent the carcinogenic process from turning into aggressive cancer. Over the last two decades, multiple natural dietary compounds with diverse chemical structures such flavonoids, tannins, curcumins and polyphenols have been proposed as chemopreventive agents. These agents have proven excellent anticancer potential in the laboratory setting, however, the observed effects in vitro do not translate in clinic where they fail to live up to their expectations. Among the various reasons for this discrepancy include inefficient systemic delivery and robust bioavailability. To overcome this barrier, researchers have focused towards coupling these agents with nano based encapsulation technology that in principle will enhance bioavailability and ultimately benefit clinical outcome. The last decade has witnessed rapid advancement in the development of nanochemopreventive technology with emergence of many nano encapsulated formulations of different dietary anticancer agents. This review summarizes the most up-to-date knowledge on the studies performed in nanochemoprevention, their proposed use in the clinic and future directions in which this field is heading. As the knowledge of the dynamics of nano encapsulation evolves, it is expected that researchers will bring forward newer and far more superior nanochemopreventive agents that may become standard drugs for different cancers.

References

[1]  Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer?2003, 3, 768–780, doi:10.1038/nrc1189. 14570043
[2]  Hampton, T. Clinical trials point to complexities of chemoprevention for cancer. JAMA?2005, 294, 29–31, doi:10.1001/jama.294.1.29. 15998876
[3]  Mettlin, C. Chemoprevention: will it work? Int. J. Cancer?1997, Suppl 10, 18–21.
[4]  Bode, A.M.; Dong, Z. Cancer prevention research - then and now. Nat. Rev. Cancer?2009, 9, 508–516, doi:10.1038/nrc2646. 19536108
[5]  Sporn, M.B.; Newton, D.L. Chemoprevention of cancer with retinoids. Fed. Proc.?1979, 38, 2528–2534. 488376
[6]  Sporn, M.B.; Liby, K.T. Cancer chemoprevention: Scientific promise, clinical uncertainty. Nat. Clin. Pract. Oncol.?2005, 2, 518–525. 16205771
[7]  Liu, G.; Eggler, A.L.; Dietz, B.M.; Mesecar, A.D.; Bolton, J.L.; Pezzuto, J.M.; van Breemen, R.B. Screening method for the discovery of potential cancer chemoprevention agents based on mass spectrometric detection of alkylated Keap1. Anal. Chem.?2005, 77, 6407–6414, doi:10.1021/ac050892r. 16194107
[8]  Walsh, V.; Goodman, J. The billion dollar molecule: Taxol in historical and theoretical perspective. Clin. Med.?2002, 66, 245–267.
[9]  Wall, M.E.; Wani, M.C.; Taylor, H. Isolation and chemical characterization of antitumor agents from plants. Cancer Treat. Rep.?1976, 60, 1011–1030. 991155
[10]  Wani, M.C.; Ronman, P.E.; Lindley, J.T.; Wall, M.E. Plant antitumor agents. 18. Synthesis and biological activity of camptothecin analogues. J. Med. Chem.?1980, 23, 554–560, doi:10.1021/jm00179a016. 7381856
[11]  Wani, M.C.; Schaumberg, J.P.; Taylor, H.L.; Thompson, J.B.; Wall, M.E. Plant antitumor agents, 19. Novel triterpenes from Maprounea africana. J. Nat. Prod.?1983, 46, 537–543, doi:10.1021/np50028a019. 6631436
[12]  Wani, M.C.; Nicholas, A.W.; Wall, M.E. Plant antitumor agents. 23. Synthesis and antileukemic activity of camptothecin analogues. J. Med. Chem.?1986, 29, 2358–2363, doi:10.1021/jm00161a035. 3783593
[13]  Wani, M.C.; Nicholas, A.W.; Manikumar, G.; Wall, M.E. Plant antitumor agents. 25. Total synthesis and antileukemic activity of ring A substituted camptothecin analogues. Structure-activity correlations. J. Med. Chem.?1987, 30, 1774–1779, doi:10.1021/jm00393a016. 3656353
[14]  Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci.?2010, 11, 622–646, doi:10.3390/ijms11020622. 20386657
[15]  Goswami, S.K.; Das, D.K. Resveratrol and chemoprevention. Cancer Lett.?2009, 284, 1–6, doi:10.1016/j.canlet.2009.01.041. 19261378
[16]  Azmi, A.S.; Bhat, S.H.; Hadi, S.M. Resveratrol-Cu(II) induced DNA breakage in human peripheral lymphocytes: Implications for anticancer properties. FEBS Lett.?2005, 579, 3131–3135, doi:10.1016/j.febslet.2005.04.077. 15919081
[17]  Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol.?2008, 75, 787–809, doi:10.1016/j.bcp.2007.08.016. 17900536
[18]  Surh, Y.J.; Chun, K.S. Cancer chemopreventive effects of curcumin. Adv. Exp. Med. Biol.?2007, 595, 149–172. 17569209
[19]  Banerjee, S.; Kaseb, A.O.; Wang, Z.; Kong, D.; Mohammad, M.; Padhye, S.; Sarkar, F.H.; Mohammad, R.M. Antitumor activity of gemcitabine and oxaliplatin is augmented by hymoquinone in pancreatic cancer. Cancer Res.?2009, 69, 5575–5583, doi:10.1158/0008-5472.CAN-08-4235. 19549912
[20]  Banerjee, S.; Azmi, A.S.; Padhye, S.; Singh, M.W.; Baruah, J.B.; Philip, P.A.; Sarkar, F.H.; Mohammad, R.M. Structure-activity studies on therapeutic potential of Thymoquinone analogs in pancreatic cancer. Pharm. Res.?2010, 27, 1146–1158, doi:10.1007/s11095-010-0145-3. 20422266
[21]  Banerjee, S.; Padhye, S.; Azmi, A.; Wang, Z.; Philip, P.A.; Kucuk, O.; Sarkar, F.H.; Mohammad, R.M. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr. Cancer?2010, 62, 938–946, doi:10.1080/01635581.2010.509832. 20924969
[22]  Katiyar, S.K.; Agarwal, R.; Wang, Z.Y.; Bhatia, A.K.; Mukhtar, H. (-)-Epigallocatechin-3-gallate in Camellia sinensis leaves from Himalayan region of Sikkim: Inhibitory effects against biochemical events and tumor initiation in Sencar mouse skin. Nutr. Cancer?1992, 18, 73–83, doi:10.1080/01635589209514207. 1408948
[23]  Nihal, M.; Ahsan, H.; Siddiqui, I.A.; Mukhtar, H.; Ahmad, N.; Wood, G.S. (-)-Epigallocatechin-3-gallate (EGCG) sensitizes melanoma cells to interferon induced growth inhibition in a mouse model of human melanoma. Cell Cycle?2009, 8, 2057–2063, doi:10.4161/cc.8.13.8862. 19502799
[24]  Ahmad, N.; Feyes, D.K.; Nieminen, A.L.; Agarwal, R.; Mukhtar, H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J. Natl. Cancer Inst.?1997, 89, 1881–1886, doi:10.1093/jnci/89.24.1881. 9414176
[25]  Berger, S.J.; Gupta, S.; Belfi, C.A.; Gosky, D.M.; Mukhtar, H. Green tea constituent (--)-epigallocatechin-3-gallate inhibits topoisomerase I activity in human colon carcinoma cells. Biochem. Biophys. Res. Commun.?2001, 288, 101–105, doi:10.1006/bbrc.2001.5736. 11594758
[26]  Singh, A.K.; Seth, P.; Anthony, P.; Husain, M.M.; Madhavan, S.; Mukhtar, H.; Maheshwari, R.K. Green tea constituent epigallocatechin-3-gallate inhibits angiogenic differentiation of human endothelial cells. Arch. Biochem. Biophys.?2002, 401, 29–37, doi:10.1016/S0003-9861(02)00013-9. 12054484
[27]  Hussain, T.; Gupta, S.; Adhami, V.M.; Mukhtar, H. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int. J. Cancer?2005, 113, 660–669, doi:10.1002/ijc.20629. 15455372
[28]  Katiyar, S.K.; Afaq, F.; Perez, A.; Mukhtar, H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis?2001, 22, 287–294, doi:10.1093/carcin/22.2.287. 11181450
[29]  Boocock, D.J.; Patel, K.R.; Faust, G.E.; Normolle, D.P.; Marczylo, T.H.; Crowell, J.A.; Brenner, D.E.; Booth, T.D.; Gescher, A.; Steward, W.P. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.?2007, 848, 182–187, doi:10.1016/j.jchromb.2006.10.017. 17097357
[30]  Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm.?2007, 4, 807–818, doi:10.1021/mp700113r. 17999464
[31]  Freitas, R.A., Jr. What is nanomedicine? Nanomedicine?2005, 1, 2–9, doi:10.1016/j.nano.2004.11.003. 17292052
[32]  Freitas, R.A., Jr. Pharmacytes: An ideal vehicle for targeted drug delivery. J. Nanosci. Nanotechnol.?2006, 6, 2769–2775, doi:10.1166/jnn.2006.413. 17048481
[33]  Lasic, D.D. Novel applications of liposomes. Trends Biotechnol.?1998, 16, 307–321, doi:10.1016/S0167-7799(98)01220-7. 9675915
[34]  Papahadjopoulos, D.; Allen, T.M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S.K.; Lee, K.D.; Woodle, M.C.; Lasic, D.D.; Redemann, C. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA?1991, 88, 11460–11464, doi:10.1073/pnas.88.24.11460. 1763060
[35]  Winterhalter, M.; Lasic, D.D. Liposome stability and formation: Experimental parameters and theories on the size distribution. Chem. Phys. Lipids?1993, 64, 35–43, doi:10.1016/0009-3084(93)90056-9. 8242841
[36]  Lasic, D.D.; Martin, F.J.; Gabizon, A.; Huang, S.K.; Papahadjopoulos, D. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta?1991, 1070, 187–192, doi:10.1016/0005-2736(91)90162-2. 1751525
[37]  Hamori, C.J.; Lasic, D.D.; Vreman, H.J.; Stevenson, D.K. Targeting zinc protoporphyrin liposomes to the spleen using reticuloendothelial blockade with blank liposomes. Pediatr. Res.?1993, 34, 1–5, doi:10.1203/00006450-199307000-00001. 8356009
[38]  Torchilin, V.P. Liposomes as targetable drug carriers. Crit. Rev. Ther. Drug Carrier Syst.?1985, 2, 65–115. 3913530
[39]  Elbayoumi, T.A.; Torchilin, V.P. Liposomes for targeted delivery of antithrombotic drugs. Expert Opin. Drug Deliv.?2008, 5, 1185–1198, doi:10.1517/17425240802497457. 18976130
[40]  Senior, J.H. Liposomes in vivo: Prospects for liposome-based pharmaceuticals in the 1990s. Biotechnol. Genet Eng. Rev.?1990, 8, 279–317, doi:10.1080/02648725.1990.10647872. 2094273
[41]  Senior, J.H. Fate and behavior of liposomes in vivo: A review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst.?1987, 3, 123–193. 3542245
[42]  Torchilin, V.P.; Levchenko, T.S.; Lukyanov, A.N.; Khaw, B.A.; Klibanov, A.L.; Rammohan, R.; Samokhin, G.P.; Whiteman, K.R. p-Nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta?2001, 1511, 397–411, doi:10.1016/S0005-2728(01)00165-7. 11286983
[43]  Orive, G.; Anitua, E.; Pedras, J.L.; Emerich, D.L. Biomaterials for promoting protection, repair and regeneration. Nat. Rev. Neurosci.?2009, 10, 682–692. 19654582
[44]  Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.?2001, 46, 3–26, doi:10.1016/S0169-409X(00)00129-0. 11259830
[45]  Wang, J.; Mongayt, D.; Torchilin, V.P. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J. Drug Target?2005, 13, 73–80, doi:10.1080/10611860400011935. 15848957
[46]  Siddiqui, I.A.; Adhami, V.M.; Ahmad, N.; Mukhtar, H. Nanochemoprevention: sustained release of bioactive food components for cancer prevention. Nutr. Cancer?2010, 62, 883–890, doi:10.1080/01635581.2010.509537. 20924964
[47]  Shishodia, S.; Sethi, G.; Aggarwal, B.B. Curcumin: getting back to the roots. Ann. NY Acad. Sci.?2005, 1056, 206–217, doi:10.1196/annals.1352.010. 16387689
[48]  Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res.?2003, 23, 363–398. 12680238
[49]  Sharma, R.A.; Steward, W.P.; Gescher, A.J. Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol.?2007, 595, 453–470. 17569224
[50]  Tiyaboonchai, W.; Tungpradit, W.; Plianbangchang, P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int. J. Pharm.?2007, 337, 299–306, doi:10.1016/j.ijpharm.2006.12.043. 17287099
[51]  Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnol.?2007, 5, 3, doi:10.1186/1477-3155-5-3.
[52]  Sou, K.; Inenaga, S.; Takeoka, S.; Tsuchida, E. Loading of curcumin into macrophages using lipid-based nanoparticles. Int. J. Pharm.?2008, 352, 287–293, doi:10.1016/j.ijpharm.2007.10.033. 18063327
[53]  Sou, K.; Oyajobi, B.; Goins, B.; Phillips, W.T.; Tsuchida, E. Characterization and cytotoxicity of self-organized assemblies of curcumin and amphiphatic poly(ethylene glycol). J. Biomed. Nanotechnol.?2009, 5, 202–208, doi:10.1166/jbn.2009.1025. 20055098
[54]  Sahu, A.; Bora, U.; Kasoju, N.; Goswami, P. Synthesis of novel biodegradable and selfassembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater.?2008, 4, 1752–1761, doi:10.1016/j.actbio.2008.04.021. 18524701
[55]  Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci.?2009, 37, 223–230, doi:10.1016/j.ejps.2009.02.019. 19491009
[56]  Mulik, R.; Mahadik, K.; Paradkar, A. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study. Eur. J. Pharm. Sci.?2009, 37, 395–404, doi:10.1016/j.ejps.2009.03.009. 19491031
[57]  Gupta, V.; Aseh, A.; Rios, C.N.; Aggarwal, B.B.; Mathur, A.B. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int. J. Nanomed.?2009, 4, 115–122.
[58]  Shutava, T.G.; Balkundi, S.S.; Vangala, P.; Steffan, J.J.; Bigelow, R.L.; Cardelli, J.A.; O'Neal, D.P.; Lvov, Y.M. Layer-by-Layer-Coated Gelatin Nanoparticles as a Vehicle for Delivery of Natural Polyphenols. ACS Nano?2009, 3, 1877–1885, doi:10.1021/nn900451a. 19534472
[59]  Das, R.K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine?2010, 6, 153–160, doi:10.1016/j.nano.2009.05.009. 19616123
[60]  Anand, P.; Nair, H.B.; Sung, B.; Kunnumakkara, A.B.; Yadav, V.R.; Tekmal, R.R.; Aggarwal, B.B. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol.?2010, 79, 330–338, doi:10.1016/j.bcp.2009.09.003. 19735646
[61]  Onoue, S.; Takahashi, H.; Kawabata, Y.; Seto, Y.; Hatanaka, J.; Timmermann, B.; Yamada, S. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J. Pharm. Sci.?2010, 99, 1871–1881. 19827133
[62]  Mukerjee, A.; Vishwanatha, J.K. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res.?2009, 29, 3867–3875. 19846921
[63]  Cartiera, M.S.; Ferreira, E.C.; Caputo, C.; Egan, M.E.; Caplan, M.J.; Saltzman, W.M. Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Mol. Pharm.?2010, 7, 86–93, doi:10.1021/mp900138a. 19886674
[64]  Sou, K.; Oyajobi, B.; Goins, B.; Phillips, W.T.; Tsuchida, E. Characterization and cytotoxicity of self-organized assemblies of curcumin and amphiphatic poly(ethylene glycol). J. Biomed. Nanotechnol.?2009, 5, 202–208, doi:10.1166/jbn.2009.1025. 20055098
[65]  Prajakta, D.; Ratnesh, J.; Chandan, K.; Suresh, S.; Grace, S.; Meera, V.; Vandana, P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J. Biomed. Nanotechnol.?2009, 5, 445–455, doi:10.1166/jbn.2009.1038. 20201417
[66]  Yallapu, M.M.; Maher, D.M.; Sundram, V.; Bell, M.C.; Jaggi, M.; Chauhan, S.C. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J. Ovarian Res.?2010, 3, 11, doi:10.1186/1757-2215-3-11. 20429876
[67]  Zheng, Z.; Zhang, X.; Carbo, D.; Clark, C.; Nathan, C.A.; Lvov, Y. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir?2010, 26, 7679–7681, doi:10.1021/la101246a. 20459072
[68]  Yallapu, M.M.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid. Interface Sci.?2010, 1, 19–29.
[69]  Jang, M.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol. Drugs Exp. Clin. Res.?1999, 25, 65–77. 10370867
[70]  Yao, Q.; Hou, S.X.; He, W.L.; Feng, J.L.; Wang, X.C.; Fei, H.X.; Chen, Z.H. [Study on the preparation of resveratrol chitosan nanoparticles with free amino groups on the surface]. Zhongguo Zhong Yao Za Zhi?2006, 31, 205–208. 16572999
[71]  Wang, X.C.; Hou, S.X.; Li, W.; Li, X.Y.; Zhou, Y.W. Study on drug release in vitro and rat intestinal absorption of resveratrol nanoliposomes. Zhongguo Zhong Yao Za Zhi?2007, 32, 1084–1088. 17672350
[72]  Shao, J.; Li, X.; Lu, X.; Jiang, C.; Hu, Y.; Li, Q.; You, Y.; Fu, Z. Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf. B Biointerfaces?2009, 72, 40–47, doi:10.1016/j.colsurfb.2009.03.010. 19395246
[73]  Lu, X.; Ji, C.; Xu, H.; Li, X.; Ding, H.; Ye, M.; Zhu, Z.; Ding, D.; Jiang, X.; Ding, X.; Guo, X. Resveratrol-loaded polymeric micelles protect cells from Abeta-induced oxidative stress. Int. J. Pharm.?2009, 375, 89–96, doi:10.1016/j.ijpharm.2009.03.021. 19481694
[74]  Teskac, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm.?2010, 390, 61–69, doi:10.1016/j.ijpharm.2009.10.011. 19833178
[75]  Kobierski, S.; Ofori-Kwakye, K.; Muller, R.H.; Keck, C.M. Resveratrol nanosuspensions for dermal application--production, characterization, and physical stability. Pharmazie?2009, 64, 741–747. 20099519
[76]  Mukhtar, H.; Katiyar, S.K.; Agarwal, R. Cancer chemoprevention by green tea components. Adv. Exp. Med. Biol.?1994, 354, 123–134. 8067281
[77]  Siddiqui, I.A.; Adhami, V.M.; Bharali, D.J.; Hafeez, B.B.; Asim, M.; Khwaja, S.I.; Ahmad, N.; Cui, H.; Mousa, S.A.; Mukhtar, H. Introducing nanochemoprevention as a novel approach for cancer control: Proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res.?2009, 69, 1712–1716, doi:10.1158/0008-5472.CAN-08-3978. 19223530
[78]  Barras, A.; Mezzetti, A.; Richard, A.; Lazzaroni, S.; Roux, S.; Melnyk, P.; Betbeder, D.; Monfilliette-Dupont, N. Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int. J. Pharm.?2009, 379, 270–277, doi:10.1016/j.ijpharm.2009.05.054. 19501139
[79]  Shutava, T.G.; Balkundi, S.S.; Lvov, Y.M. (-)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. J. Colloid. Interface Sci.?2009, 330, 276–283, doi:10.1016/j.jcis.2008.10.082. 19027120
[80]  Shutava, T.G.; Lvov, Y.M. Nano-engineered microcapsules of tannic acid and chitosan for protein encapsulation. J. Nanosci. Nanotechnol.?2006, 6, 1655–1661, doi:10.1166/jnn.2006.225. 17025066
[81]  Zu, Y.G.; Yuan, S.; Zhao, X.H.; Zhang, Y.; Zhang, X.N.; Jiang, R. [Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles]. Yao Xue Xue Bao?2009, 44, 525–531. 19618731
[82]  Smith, A.; Giunta, B.; Bickford, P.C.; Fountain, M.; Tan, J.; Shytle, R.D. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int. J. Pharm.?2010, 389, 207–212, doi:10.1016/j.ijpharm.2010.01.012. 20083179
[83]  Dube, A.; Nicolazzo, J.A.; Larson, I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate. Eur. J. Pharm. Sci.?2010, 2, 219–225.
[84]  Kumar, R.; Verma, V.; Jain, A.; Jain, R.K.; Maikhuri, J.P.; Gupta, G. Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer. J. Nutr. Biochem.?2010, doi:10.1016/j.jnutbio.2010.06.003.
[85]  Li, W.; Frame, L.T.; Hirsch, S.; Cobos, E. Genistein and hematological malignancies. Cancer Lett.?2010, 296, 1–8, doi:10.1016/j.canlet.2010.05.002. 20580867
[86]  Gadgeel, S.M.; Ali, S.; Philip, P.A.; Wozniak, A.; Sarkar, F.H. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines. Cancer?2009, 115, 2165–2176, doi:10.1002/cncr.24250. 19288574
[87]  Szkudelska, K.; Nogowski, L.; Szkudelski, T. Resveratrol and genistein as adenosine triphosphate-depleting agents in fat cells. Metabolism?2010, doi:10.1016/j.metabol.2010.07.006.
[88]  Yamasaki, M.; Mukai, A.; Ohba, M.; Mine, Y.; Sakakibara, Y.; Suiko, M.; Morishita, K.; Nishiyama, K. Genistein induced apoptotic cell death in adult T-cell leukemia cells through estrogen receptors. Biosci. Biotechnol. Biochem.?2010, 74, 2113–2115, doi:10.1271/bbb.100359. 20944417
[89]  Ullah, M.F.; Ahmad, A.; Zubair, H.; Khan, H.Y.; Wang, Z.; Sarkar, F.H.; Hadi, S.M. Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol. Nutr. Food Res.?2010, doi:10.1002/mnfr.201000329.
[90]  Okamoto, F.; Okabe, K.; Kajiya, H. Genistein, a soybean isoflavone, inhibits inward rectifier K(+) channels in rat osteoclasts. Jpn. J. Physiol.?2001, 51, 501–509, doi:10.2170/jjphysiol.51.501. 11564287
[91]  Azmi, A.S.; Ahmad, A.; Banerjee, S.; Rangnekar, V.M.; Mohammad, R.M.; Sarkar, F.H. Chemoprevention of pancreatic cancer: Characterization of Par-4 and its modulation by 3,3′ diindolylmethane (DIM). Pharm. Res.?2008, 25, 2117–2124, doi:10.1007/s11095-008-9581-8. 18427961
[92]  Silva, A.P.; Nunes, B.R.; De Oliveira, M.C.; Koester, L.S.; Mayorga, P.; Bassani, V.L.; Teixeira, H.F. Development of topical nanoemulsions containing the isoflavone genistein. Pharmazie?2009, 64, 32–35. 19216228
[93]  Leonarduzzi, G.; Testa, G.; Sottero, B.; Gamba, P.; Poli, G. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Curr. Med. Chem.?2010, 17, 74–95, doi:10.2174/092986710789957760. 19941477
[94]  Si, H.Y.; Li, D.P.; Wang, T.M.; Zhang, H.L.; Ren, F.Y.; Xu, Z.G.; Zhao, Y.Y. Improving the antitumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J. Nanosci. Nanotechnol.?2010, 10, 2325–2331, doi:10.1166/jnn.2010.1913. 20355429
[95]  Ganguly, A.; Yang, H.; Cabral, F. Paclitaxel-dependent cell lines reveal a novel drug activity. Mol. Cancer Ther.?2010, 9, 2914–2923, doi:10.1158/1535-7163.MCT-10-0552. 20978163
[96]  Potier, P.; Gueritte-Voegelein, F.; Guenard, D. Taxoids, a new class of antitumour agents of plant origin: recent results. Nouv. Rev. Fr. Hematol.?1994, 36 (Suppl. 1), S21–S23. 7909940
[97]  Gueritte-Voegelein, F.; Guenard, D.; Potier, P. Taxol and derivatives: A biogenetic hypothesis. J. Nat. Prod.?1987, 50, 9–18, doi:10.1021/np50049a002. 2885400
[98]  Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomed.?2009, 4, 99–105, doi:10.1504/IJNM.2009.028116.
[99]  Krishnadas, A.; Rubinstein, I.; Onyuksel, H. Sterically stabilized phospholipid mixed micelles: In vitro evaluation as a novel carrier for water-insoluble drugs. Pharm. Res.?2003, 20, 297–302, doi:10.1023/A:1022243709003. 12636171
[100]  Onyuksel, H.; Jeon, E.; Rubinstein, I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett.?2009, 274, 327–330, doi:10.1016/j.canlet.2008.09.041. 19022562
[101]  Rubinstein, I.; Soos, I.; Onyuksel, H. Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. Chem. Biol. Interact?2008, 171, 190–194, doi:10.1016/j.cbi.2007.03.008. 17499651

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133