An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode
The detection of pathogenic bacteria remains a challenge for the struggle against biological weapons, nosocomial diseases, and for food safety. In this research, our aim was to develop an easy-to-use electrochemical immunosensor for the detection of pathogenic Staphylococcus aureus ATCC25923. The biosensor was elaborated by the immobilization of anti- S. aureus antibodies using a self-assembled monolayer (SAMs) of 3-Mercaptopropionic acid (MPA). These molecular assemblies were spontaneously formed by the immersion of the substrate in an organic solvent containing the SAMs that can covalently bond to the gold surface. The functionalization of the immunosensor was characterized using two electrochemical techniques: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Here, the analysis was performed in phosphate buffer with ferro/ferricyanide as the redox probe. The EIS technique was used for affinity assays: antibody-cell binding. A linear relationship between the increment in the electron transfer resistance (R CT) and the logarithmic value of S. aureus concentration was observed between 10 and 10 6 CFU/mL. The limit of detection (LOD) was observed at 10 CFU/mL, and the reproducibility was calculated to 8%. Finally, a good selectivity versus E. coli and S. epidermidis was obtained for our developed immunosensor demonstrating its specificity towards only S. aureus.
References
[1]
Chaubeau-Duffour, C. Toxi-infections alimentaires d’origine staphylococcique. Le Point Vétérinaire?1992, 24, 33–40.
[2]
De Buyser, M.-L.; Lapeyre, C. Mammites à staphylocoques et sécurité alimentaire. Le Point Vétérinaire?1994, 26, 79–82.
[3]
Brisabois, A.; Lafarge, V.; Brouillaud, A.; De Buyser, M.L.; Collette, C.; Garin-Bastuji, B.; Thorel, M.F. Les germes pathogènes dans le lait et les produits laitiers: Situation en France et en Europe. Rev. Sci. Tech.?1997, 16, 452–471.
[4]
Boujday, S.; Briandet, R.; Salmain, M.; Herry, J.-M.; Marnet, P.-G.; Gautier, M.; Pradier, C.-M. Detection of pathogenic Staphylococcus aureus bacteria by gold based immunosensors. Microchim. Acta?2008, 163, 203–209, doi:10.1007/s00604-008-0024-3.
[5]
Li, D.; Feng, Y.; Zhou, L.; Ye, Z.; Wang, J.; Ying, Y.; Ruan, C.; Wang, R.; Li, Y. Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7. Anal. Chim. Acta.?2011, 687, 89–96, doi:10.1016/j.aca.2010.12.018.
[6]
Subramanian, A.; Irudayaraj, J.; Ryan, T. A mixed self-assembled monolayer-based surface plasmonimmunosensor for detection of E. coli O157:H7. Biosens. Bioelectron?2006, 7, 998–1006.
[7]
Laczka, O.; Baldrich, E.; Mu?oz, F.X.; del Campo, F. Detection of Escherichia coli and Salmonella typhimurium using interdigitated microelectrode capacitive immunosensors: The importance of transducer geometry. J. Anal. Chem.?2008, 80, 7239–7247, doi:10.1021/ac800643k.
[8]
Salam, F.; Tothill, I.E. Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosens. Bioelectron.?2009, 24, 2630–2636, doi:10.1016/j.bios.2009.01.025.
[9]
Subramanian, A.; Irudayaraj, J.; Ryan, T. Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of Staphylococcus aureus. Sens. Actuator. B?2006, 114, 192–198, doi:10.1016/j.snb.2005.04.030.
[10]
Escamilla-Gomez, V.; Campuzano, S.; Pedrero, M.; Pingarron, J.M. Electrochemical immunosensor designs for the determination of Staphylococcus aureus using 3,3-dithiodipropionic acid di(N-succinimidyl ester)-modified gold electrodes. Talanta?2008, 77, 876–881, doi:10.1016/j.talanta.2008.07.045.
[11]
Tan, F.; Leung, P.H.M.; Liu, Z.B.; Zhang, Y.; Xiao, L.D.; Ye, W.W.; Zhang, X.; Yi, L.; Yang, M. A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sens. Actuator. B?2011, 159, 328–335, doi:10.1016/j.snb.2011.06.074.
[12]
Grysakowski, B.; Jasielec, J.; Wierzba, B.; Sokalski, T.; Lewenstam, A.; Danielewski, M. Electrochemical Impedance Spectroscopy (EIS) of ion sensors: Direct modeling and inverse problem solving using the Nernst-Planck-Poisson (NPP) model and the HGS(FP) optimization strategy. J. Electroanal. Chem.?2011, 662, 143–149, doi:10.1016/j.jelechem.2011.04.026.