全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Buildings  2012 

Assessment of Seismic Vulnerability of a Historical Masonry Building

DOI: 10.3390/buildings2030332

Keywords: masonry buildings, knowledge level, multidisciplinary in-situ inquiries, FE models, dynamic behavior, non-linear analyses

Full-Text   Cite this paper   Add to My Lib

Abstract:

A multidisciplinary approach for assessing the seismic vulnerability of heritage masonry buildings is described throughout the paper. The procedure is applied to a specific case study that represents a very common typology of masonry building in Italy. The seismic vulnerability of the examined building was assessed after the following: (a) historical investigation about the building and the surrounding area, (b) detailed geometrical relieves, (c) identification of materials by means of surveys and literature indications, (d) dynamic in-situ tests, (e) foundation soil characterization, (f) dynamic identification of the structure by means of a refined Finite Element (FE) model. After these steps, the FE model was used to assess the safety level of the building by means of non-linear static analyses according to the provisions of Eurocode 8 and estimate of the q-factor. Some parametric studies were also carried out by means of both linear dynamic and non-linear static analyses.

References

[1]  ICOMOS Charter. Principles for the Analysis, Conservation and Structural Restoration of Architectural Heritage; International Council on Monument and Sites (ICOMOS). In Proceedings of the 14th ICOMOS General Assembly, Victoria Falls, Zimbabwe; 2003.
[2]  Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale allineate alle nuove Norme Tecniche per le costruzioni (D.M. 14 gennaio 2008); G.U.R.I.; 2008; Volume 24.
[3]  Binda, L.; Saisi, A.; Tiraboschi, C. Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. 2000, 14, 199–233, doi:10.1016/S0950-0618(00)00018-0.
[4]  McCann, D.M.; Forde, M.C. Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 2001, 34, 71–84, doi:10.1016/S0963-8695(00)00032-3.
[5]  Clark, M.R.; McCann, D.M.; Forde, M.C. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT E Int. 2003, 36, 265–275, doi:10.1016/S0963-8695(02)00060-9.
[6]  Carpinteri, A.; Invernizzi, S.; Lacidogna, G. In situ damage assessment and non linear modelling of historical masonry towers. Eng. Struct. 2005, 27, 387–395, doi:10.1016/j.engstruct.2004.11.001.
[7]  Binda, L.; Zanzi, L.; Lualdi, M.; Condoleo, P. The use of georadar to assess damage to a masonry Bell Tower in Cremona, Italy. NDT E Int. 2005, 38, 171–179, doi:10.1016/j.ndteint.2004.03.010.
[8]  Carpinteri, A.; Invernizzi, S.; Lacidogna, G. Historical brick-masonry subjected to double flat-jack test: Acoustic emissions and scale effects on cracking density. Constr. Build. Mater. 2009, 23, 2813–2820, doi:10.1016/j.conbuildmat.2009.03.003.
[9]  De Sortis, A.; Antonacci, E.; Vestroni, F. Dynamic identification of a masonry building using forced vibration test. Eng. Struct. 2005, 27, 155–165, doi:10.1016/j.engstruct.2004.08.012.
[10]  Bennati, S.; Nardini, L.; Salvatore, W. Dynamical behaviour of a masonry medieval tower subjected to bell’s action. Part I: Bell’s action measurement and modelling. J. Struct. Eng. ASCE 2005, 131, 1647–1655, doi:10.1061/(ASCE)0733-9445(2005)131:11(1647).
[11]  Gentile, C. Operational Modal Analysis and Assessment of Historical Structures. In Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 26–27 April 2005.
[12]  Gentile, C.; Saisi, A. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr. Build. Mater. 2007, 21, 1311–1321, doi:10.1016/j.conbuildmat.2006.01.007.
[13]  Ivorra, S.; Pallarés, F.J. A Masonry Bell-Tower Assessment by Modal Testing. In Proceedings of the 2nd International Operational Modal Analysis Conference (IOMAC), Copenhagen, Denmark, 30 April–2 May 2007.
[14]  Ceroni, F.; Pecce, M.; Voto, S.; Manfredi, G. Historical, architectural and structural assessment of the Bell Tower of Santa Maria del Carmine. Int. J. Archit. Herit. 2009, 3, 169–194, doi:10.1080/15583050802347490.
[15]  Rainieri, C.; Fabbrocino, G. Operational modal analysis for the characterization of heritage structures. Geofizika 2011, 28, 109–126.
[16]  Tomazevic, M.. The Computer Program POR; Report ZRMK, Ljubljana, Slovenian, 1978; (in Slovenian).
[17]  Tomazevic, M. Dynamic modelling of masonry buildings: Storey mechanism model as a simple alternative. Earthq. Eng. Struct. Dyn. 1987, 15, 731–749, doi:10.1002/eqe.4290150606.
[18]  Magenes, G.; Della Fontana, A. Simplified non-linear seismic analysis of masonry buildings. Proc. Br. Mason. Soc. 1998, 8, 190–195.
[19]  Louren?o, P.B. Anisotropic softening model for masonry plates and shells. J. Struct. Eng. 2000, 126, 1008–1016, doi:10.1061/(ASCE)0733-9445(2000)126:9(1008).
[20]  Massart, T.J.; Peerlings, R.H.J.; Geers, M.G.D. Mesoscopicmodelling of failure and damage induced anisotropy in brick masonry. Eur. J. Mech. Solids 2004, 23, 719–735, doi:10.1016/j.euromechsol.2004.05.003.
[21]  Calderini, C.; Lagomarsino, S. A continuum model for in-plane anisotropic inelastic behaviour of masonry. J. Struct. Eng. 2008, 134, 209–220, doi:10.1061/(ASCE)0733-9445(2008)134:2(209).
[22]  Chen, S.-Y.; Moon, F.L.; Yi, T. A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers. Eng. Struct. 2008, 30, 2242–2252, doi:10.1016/j.engstruct.2007.12.001.
[23]  Ceroni, F.; Pecce, M.; Manfredi, G. Modelling and seismic assessment of the bell Tower of Santa Maria del carmine: Problems and solutions. J. Earthq. Eng. 2010, 14, 30–56.
[24]  De Luca, A.; Giordano, A.; Mele, E. A simplified procedure for assessing the seismic capacity of masonry arches. Eng. Struct. 2004, 26, 1915–1929, doi:10.1016/j.engstruct.2004.07.003.
[25]  Lagomarsino, S.; Galasco, A.; Penna, A. Non Linear Macro-element Dynamic Analysis of Masonry Buildings. In Proceedings of the ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rethymno, Crete, Greece, 13–16 June 2007.
[26]  Aerial view of historical centre of Benevento, Italy form satellite. Available online: http://maps.google.it/maps (accessed on 15 January 2012).
[27]  NTC 2008. Norme Tecniche per le Costruzioni, Decreto Ministeriale del 14/01/2008. In G.U.R.I.; 2008; Volume 29. (in Italian).
[28]  OCPM 3431. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. Ordinanza del Presidente del Consiglio dei Ministri del 03/05/2005. In G.U.R.I.; 2005; 107. (in Italian).
[29]  Circolare 617. Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008. Ministero dei Lavori Pubblici, Roma, 02/02/2009 (in Italian);
[30]  Eurocode 8. Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings; Committee for Standardization: Brussels, Belgium, 2005. EN 1998-1..
[31]  Marcari, G.; Fabbrocino, G.; Louren?o, P. Mechanical Properties of Tuff and Calcarenite Stone Masonry Panels under Compression. In Proceedings of the 8th International Masonry Conference, Dresden, Germany, 4–7 July 2010.
[32]  Binda, L.; Pina-Henriques, J.; Anzani, A.; Fontana, A.; Louren?o, P.B. A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: Testing and modelling. Eng. Struct. 2006, 28, 1132–1148, doi:10.1016/j.engstruct.2005.12.004.
[33]  Augenti, N.; Parisi, F. Constitutive models for tuff masonry under uniaxial compression. J. Mater. Civ. Eng. 2010, 22, 1102–1111, doi:10.1061/(ASCE)MT.1943-5533.0000119.
[34]  Improta, L.; di Giulio, G.; Iannaccone, G. Variations of local seismic response inBenevento (Southern Italy) using earthquakes and ambient noise recordings. J. Seismol. 2005, 9, 191–210, doi:10.1007/s10950-005-3987-0.
[35]  DIANA Finite Elements Analysis. In User’s Manual—Release 9.4—Element Library, Material Library; TNO Building and Construction Research, Department of Computational Mechanics: A.A. Delft, Netherlands, 2009.
[36]  Eurocode 8. Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings; Committee for Standardization: Brussels, Belgium, 2005. EN 1998-1..
[37]  Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice; Wiley: New York, NY, USA, 1948.
[38]  Ceroni, F.; Sica, S.; Pecce, M.; Garofano, A. Effect of Soil-Structure Interaction on the dynamic behavior of masonry and RC buildings. In Proceedings of the 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portugal, 24-28 September, 2012.
[39]  Eurocode 2. Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; SPRING Singapore: Singapore, 2004. ENV 1992-1-1: 2004: E..
[40]  Selby, R.G.; Vecchio, F.J. Three-dimensional Constitutive Relations for Reinforced Concrete. In Technical Report 93-02; Department Civil Engineer, University of Toronto: Toronto, Canada, 1993.
[41]  Crisfield, M.A. Non-Linear Finite Element Analysis of Solids and Structures; John Wiley & Sons: Hoboken, NJ, USA, 1991; Volume 1.
[42]  Galasco, A.; Lagomarsino, S.; Penna, A. On the Use of Pushover Analysis for Existing Masonry Buildings. In Proceedings of the 1st European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, 3–8 September 2006.
[43]  Stime di pericolosità sismica per diverse probabilità di superamento in 50 anni: Valori di ag. Available online: http://esse1.mi.ingv.it/d2.html (accessed on 15 January 2012, in Italian).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133