We demonstrate here that thiol-ene chemistry can be used to provide side-chain functionalized monomers based on 3,4-propylenedioxythiophene (ProDOT) containing ionic, neutral, hydrophobic, and hydrophilic side chains. All reactions gave high yields and purification could generally be accomplished through precipitation. These monomers were polymerized either chemically or electro-chemically to give soluble materials or conductive films, respectively. This strategy provides for facile tuning of the solubility, film surface chemistry, and film morphology of this class of conducting polymers.
Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.D.C.; Santos, D.A.D.; Bredas, J.L.; Logdlund, M.; et al. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128.
[3]
Kirchmeyer, S.; Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 2005, 15, 2077–2088, doi:10.1039/b417803n.
[4]
Hughes, M.; Chen, G.Z.; Shaffer, M.S.P.; Fray, D.J.; Windle, A.H. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 2002, 14, 1610–1613, doi:10.1021/cm010744r.
[5]
Gerard, M. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359, doi:10.1016/S0956-5663(01)00312-8.
[6]
Kim, D.H.; Wiler, J.A.; Anderson, D.J.; Kipke, D.R.; Martin, D.C. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater. 2010, 6, 57–62, doi:10.1016/j.actbio.2009.07.034.
[7]
Richardson-Burns, S.M.; Hendricks, J.L.; Martin, D.C. Electrochemical polymerization of conducting polymers in living neural tissue. J. Neural Eng. 2007, 4, L6–L13, doi:10.1088/1741-2560/4/2/L02.
[8]
Cui, X.; Lee, V.A.; Raphael, Y.; Wiler, J.A.; Hetke, J.F.; Anderson, D.J.; Martin, D.C. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. Part A 2001, 56, 261–272, doi:10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I.
[9]
Kim, W.H.; Kushto, G.P.; Kim, H.; Kafafi, Z.H. Effect of annealing on the electrical properties and morphology of a conducting polymer used as an anode in organic light-emitting devices. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 2522–2528, doi:10.1002/polb.10646.
[10]
Liu, J.; Guo, T.-F.; Yang, Y. Effects of thermal annealing on the performance of polymer light emitting diodes. J. Appl. Phys. 2002, 91, 1595:1–1595:6.
[11]
Nguyen, T.-Q.; Martini, I.B.; Liu, J.; Schwartz, B.J. Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton-exciton annihilation and aggregation in MEH-PPV films. J. Phys. Chem. B 2000, 104, 237–255, doi:10.1021/jp993190c.
[12]
Chang, M.-Y.; Yen, H.-B.; Hung, C.-Y.; Chen, Y.-F.; Lin, S.-C.; Huang, W.-Y.; Han, Y.-K. Effect of solvent-assisted thermal treatment on the performance of polyfluorene-based polymer light emitting diodes. J. Electrochem. Soc. 2010, 157, J116–J119.
[13]
Yoo, J.E.; Lee, K.S.; Garcia, A.; Tarver, J.; Gomez, E.D.; Baldwin, K.; Sun, Y.; Meng, H.; Nguyen, T.-Q.; Loo, Y.-L. Directly patternable, highly conducting polymers for broad applications in organic electronics. Proc. Natl. Acad. Sci. USA 2010, 107, 5712–5717.
[14]
Lai, S.; Chan, M.; Fung, M.; Lee, C.; Lee, S. Concentration effect of glycerol on the conductivity of PEDOT film and the device performance. Mater. Sci. Eng. B 2003, 104, 26–30, doi:10.1016/S0921-5107(03)00262-9.
[15]
Peet, J.; Kim, J.Y.; Coates, N.E.; Ma, W.L.; Moses, D.; Heeger, A.J.; Bazan, G.C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500, doi:10.1038/nmat1928.
[16]
Bagchi, D.; Menon, R. Conformational modification of conducting polymer chains by solvents: Small-angle X-ray scattering study. Chem. Phys. Lett. 2006, 425, 114–117, doi:10.1016/j.cplett.2006.05.014.
[17]
Mitchell, G.; Davis, F.; Legge, C. The effect of dopant molecules on the molecular order of electrically-conducting films of polypyrrole. Synth. Met. 1988, 26, 247–257, doi:10.1016/0379-6779(88)90241-X.
[18]
Chiu, W.W.; Trava?-Sejdi?, J.; Cooney, R.P.; Bowmaker, G.A. Studies of dopant effects in poly(3,4-ethylenedi-oxythiophene) using Raman spectroscopy. J. Raman Spectrosc. 2006, 37, 1354–1361, doi:10.1002/jrs.1545.
[19]
Green, R.A; Lovell, N.H.; Poole-Warren, L.A. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomater. 2010, 6, 63–71, doi:10.1016/j.actbio.2009.06.030.
[20]
Pernaut, J.-M.; Reynolds, J.R. Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J. Phys. Chem. B 2000, 104, 4080–4090.
[21]
Wadhwa, R.; Lagenaur, C.F.; Cui, X.T. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J. Control. Release 2006, 110, 531–541, doi:10.1016/j.jconrel.2005.10.027.
[22]
Hoyle, C.E.; Lee, T.Y.; Roper, T. Thiol-enes: Chemistry of the past with promise for the future. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5301–5338.
[23]
Kade, M.J.; Burke, D.J.; Hawker, C.J. The power of thiol-ene chemistry. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 743–750.
[24]
Bu, H.-B.; G?tz, G.; Reinold, E.; Vogt, A.; Schmid, S.; Blanco, R.; Segura, J.L.; B?uerle, P. Click-functionalization of conducting poly(3,4-ethylenedioxythiophene) (PEDOT). Chem. Commun. 2008, doi:10.1039/B718077B.
Bu, H.-B.; G?tz, G.; Reinold, E.; Vogt, A.; Azumi, R.; Segura, J.L.; B?uerle, P. "Click”-modification of a functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) soluble in organic solvents. Chem. Commun. 2012, 48, 2677–2679.
[27]
Sinha, J.; Sahoo, R.; Kumar, A. Processable, regioregular, and “Click”able monomer and polymers based on 3,4-Propylenedioxythiophene with tunable solubility. Macromolecules 2009, 42, 2015–2022, doi:10.1021/ma802289j.
[28]
Killops, K.L.; Campos, L.M.; Hawker, C.J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J. Am. Chem. Soc. 2008, 130, 5062–5064.
[29]
Anderson, S.B.; Lin, C.-C.; Kuntzler, D.V.; Anseth, K.S. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 2011, 32, 3564–3574, doi:10.1016/j.biomaterials.2011.01.064.
Fan, Y. Adhesion of neural cells on silicon wafer with nano-topographic surface. Appl. Surf. Sci. 2002, 187, 313–318, doi:10.1016/S0169-4332(01)01046-7.
[38]
Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P.P. Neurons sense nanoscale roughness with nanometer sensitivity. Proc. Natl. Acad. Sci. USA 2010, 107, 6264–6269.