The antioxidant activity of four species of the Malvaceae family ( Sidastrum micranthum (A. St.-Hil.) Fryxell, Wissadula periplocifolia (L.) C. Presl, Sida rhombifolia (L.) E. H. L and Herissantia crispa L. (Brizicky)) were studied using the total phenolic content, DPPH radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC) assays. The antioxidant activity of the crude extract, phases and two isolated flavonoids, kaempferol 3,7-di-O-α-l-rhamnopyranoside (lespedin) and kaempferol 3-O-β-d-(6 ''-E-p-coumaroil) glucopyranoside (tiliroside) was determined. The results showed that there is a strong correlation between total polyphenol contents and antioxidant activity of the crude extract of Sidastrum micranthum and Wissadula periplocifolia; however, this was not observed between Sida rhombifolia and Herissantia crispa. The ethyl acetate (EaF) phase showed the best antioxidant effect in the total phenolics, DPPH and TEAC assays, followed by the chloroform (CfF) phase, in most species tested. Lespedin, isolated from the EaF phase of W. periplocifolia and H. crispa may not be responsible for the antioxidant activity due to its low antioxidant activity (IC 50: DPPH: 1,019.92 ± 68.99 mg/mL; TEAC: 52.70 ± 0.47 mg/mL); whereas tiliroside, isolated from W. periplocifolia, H. crispa and S. micrantum presented a low IC 50 value (1.63 ± 0.86 mg/mL) compared to ascorbic acid in the TEAC assay.
References
[1]
Aruoma, O.I.; Cuppette, S.L. Antioxidant methodology; In In Vivo and in Vitro Concept; AOCS Press: Champaign, IL, USA, 1997; pp. 142–169.
[2]
Cavas, L.; Yurdakoc, K. An investigation on the antioxidant status of the invasive alga Caulerpa racemosa var. cylindracea (Sonder) Verlaque; Huisman, et Boudoresque (Caulerpales, Chlorophyta). J. Exp. Mar. Biol. Ecol. 2005, 325, 189–200.
[3]
Ames, B.N. Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases. Science 1983, 221, 1256–1264.
[4]
Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: Role of inflammatory disease and progression to cancer. Biochem. J. 1996, 313, 17–29.
[5]
Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 1991, 91, 14–22, doi:10.1016/0002-9343(91)90279-7.
[6]
Slonim, A.E.; Surber, M.L.; Page, D.L.; Sharp, R.A.; Burr, I.M. Modification of chemically induced diabetes in rats by vitamin E. Supplementation minimizes and depletion enhances development of diabetes. J. Clin. Invest. 1983, 71, 1282–1288, doi:10.1172/JCI110878.
[7]
Murthy, V.K.; Shipp, J.C.; Hanson, C.; Shipp, D.M. Delayed onset and decreased incidence of diabetes in BB rats fed free radical scavengers. Diabetes Res. Clin. Pr. 1992, 18, 11–16, doi:10.1016/0168-8227(92)90049-W.
[8]
Diaz, M.N.; Frei, B.; Vita, J.E.; Keaney, J.F. Antioxidants and atherosclerotic heart disease. J. Med. Nutr. Eng. 1997, 337, 408–416.
[9]
Gul?in, I.; Berashvili, D.; Gepdiremen, A. Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne. J. Ethnopharmacol. 2005, 101, 287–293, doi:10.1016/j.jep.2005.05.006.
[10]
Shahidi, F. Antioxidants in food and food antioxidants. Nahrung 2000, 44, 158–163, doi:10.1002/1521-3803(20000501)44:3<158::AID-FOOD158>3.0.CO;2-L.
[11]
Cook, N.C.; Samman, S. Flavonoids: Chemistry, metabolism, cardioprotective effects and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76, doi:10.1016/0955-2863(95)00168-9.
[12]
Gul?in, I; Huyut, Z.; Elmastas, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab J. Chem. 2010, 3, 43–53, doi:10.1016/j.arabjc.2009.12.008.
[13]
Bendini, A.; Cerretani, L.; Pizzolante, L.; Toschi, T.G.; Guzzo, F.; Ceoldo, S.; Marconi, A.M.; Andreetta, F.; Levi, M. Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. Eur. Food Res. Technol. 2006, 223, 102–109, doi:10.1007/s00217-005-0150-7.
[14]
Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process 2011, 89, 217–233, doi:10.1016/j.fbp.2010.04.008.
[15]
Stevens, P.F. Angiosperm phylogeny. Available online: http://www.mobot.org (accessed on 16 August 2012).
[16]
Barroso, G.M.; Peixoto, A.L.; Ichaso, C.L.F.; Costa, C.G.; Guimar?es, E.F.; Lima, A.C. Sistemática de Angiospermas no Brasil 2; Imprensa Universitária: Vi?osa, MG, Brazil, 1991.
[17]
Ahmed, Z.; Kazmi, S.N.H.; Malik, A. Phytochemical investigation of Abutilon pakistanicum. J. Nat. Prod. 1990, 53, 1342–1344, doi:10.1021/np50071a032.
[18]
Yesilada, E.; Gurbuz, I.A. Compilations of the studies on the anti-ulcerogenic effects of medicinal plants; In Recent Progress in Medicinal Plants; SCI Tech Publishing LLC: Houston, TX, USA, 2002.
[19]
Otero, R.; Nú?ez, V.; Barona, J.; Fonnegra, R.; Jiménez, S.L.; Osorio, R.G.; Saldarriaga, M.; Díaz, A. Snakebites and ethnobotany in the Colombia Part III: Neutralization of the haemorrhagic effect of Bothrops atrox venom. J. Ethnopharmacol. 2000, 73, 233–241, doi:10.1016/S0378-8741(00)00321-4.
[20]
Franzotti, E.M.; Santos, C.V.F.; Rodrigues, H.M.S.L.; Mour?o, R.H.V.; Andrade, M.R.; Antoniolli, A.R. Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J. Ethnopharmacol. 2000, 72, 273–278.
[21]
Gomes, R.A.; Nogueira, T.B.S.S.; Silva, D.A.; Agra, M.F.; Souza, M.F.V. Constituintes químicos de Wissadula periplocifolia (L.) C. Presl MALVACEAE. Available online: http://sec.sbq.org.br/cdrom/34ra/resumos/T3865-1.pdf (accessed on 16 August 2012).
[22]
Gomes, R.A.; Ramirez, R.R.A.; Maciel, J.K.S.; Agra, M.F.; Souza, M.F.V.; Falc?o-Silva, V.S.; Siqueira-Junior, J.P. Phenolic compounds from Sidastrum micranthum (A. St.-Hil.) fryxell and evaluation of acacetin and 7,4’-di-O-methylisoscutellarein as motulator of bacterial drug resistence. Quím. Nova. 2011, 34, 1385–1388.
[23]
Costa, D.A.; Matias, W.N.; Lima, I.O.; Xavier, A.L.; Costa, V.B.M.; Diniz, M.F.F.M.; Agra, M.F.; Batista, L.M.; Souza, M.F.V.; Silva, D.A. First secondary metabolites From Herissantia crispa (Brizicky) and the toxicity activity against Artemia salina leach. Quim. Nova. 2009, 32, 48–50, doi:10.1590/S0100-40422009000100009.
[24]
Gulcin, I.; Sat, I.G.; Beydemir, S.; Elmastas, M.; Kufrevioglu, O.I. Comparison of antioxidant activity of clove (Eugenia caryophylata thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400.
[25]
Silva, T.M.S.; Camara, C.A.; Lins, A.C.S.; Barbosa-Filho, J.M.; Silva, E.M.S.; Freitas, B.M.; Santos, F.A.R. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. J. Food Compos. Analys. 2006, 19, 507–511, doi:10.1016/j.jfca.2005.12.011.
[26]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical. Bio. Med. 1999, 26, 1231–1237, doi:10.1016/S0891-5849(98)00315-3.
[27]
Lizcano, L.J.; Bakkali, F.; Ruiz-Larrea, M.B.; Ruiz-Sanz, J.I. Antioxidant activity and polyphenol content of aqueous extracts from Colombian Amazonian plants with medicinal use. Food Chem. 2010, 119, 1566–1570, doi:10.1016/j.foodchem.2009.09.043.
Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity of black currant varies with organ, season, and cultivar. J. Agr. Food Chem. 2006, 54, 6271–6276, doi:10.1021/jf061112y.
[30]
Tabart, J.; Kevers, C.; Sipel, A.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chem. 2007, 105, 1268–1275, doi:10.1016/j.foodchem.2007.03.005.
[31]
Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660, doi:10.1016/j.foodchem.2005.04.028.
[32]
Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agr. Food. Chem. 2003, 51, 6509–6515, doi:10.1021/jf0343074.
[33]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326, doi:10.1016/S0308-8146(02)00423-5.
[34]
Liu, L.; Sun, Y.; Laura, T.; Liang, X.; Ye, H.; Zeng, X. Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chem. 2009, 112, 35–41, doi:10.1016/j.foodchem.2008.05.038.
[35]
Robards, K.; Prernzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999, 66, 401–436, doi:10.1016/S0308-8146(99)00093-X.
[36]
Escarpa, A.; Gonza′lez, M.C. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta 2001, 427, 119–127, doi:10.1016/S0003-2670(00)01188-0.
[37]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 29, 152–178.
[38]
Anagnostopoulou, M.A.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 2006, 94, 19–25.
[39]
Harbone, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504.
[40]
Landolfi, R.; Mower, R.L.; Steiner, M. Modification of platelet function andarachidonic acid metabolism by bioflavonoids. Structure-activity relationships. Biochem. Pharmacol. 1984, 33, 1525–1530.
[41]
Corrêa, M.F.P.; Melo, G.O.; Costa, S.S. Substancias de origem vegetal potencialmente úteis na terapia da Asma. Rev. Bras. Farmacogn. 2008, 18, 785–797, doi:10.1590/S0102-695X2008000500025.
[42]
Trueba, G.P.; Sanchez, G.M. Los flavonóides como antioxidantes naturales. Acta Farm. Bonaerense. 2001, 20, 297–306.
[43]
Wollenweber, E.; D?rr, M. Exudate Flavonoids from aerial parts or Kitaibelia vitifolia (Malvaceae). Biochem. Systemat. Ecol. 1996, 24, 801.
Cavalcante, J.M.S.; Nogueira, T.B.S.S.; Tomaz, A.C.A., Silva; Agra, M.F.; Souza, M.F.V.; Carvalho, P.R.C.; Ramos, S.R.; Nascimento, S.C.; Gon?alves-Silva, T. Steroidal and phenolic compounds from Sidastrum paniculatum (L.) fryxell and evaluation of cytotoxic and anti-inflammatory activities. Quím. Nova. 2010, 33, 846–849.
[47]
Silva, D.A.; Costa, D.A.; Silva, D.F.; Souza, M.F.V.; Agra, M.F.; Medeiros, I.A.; Barbosa-Filho, J.M.; Braz-Filho, R. Flavonoides glicosilados de Herissantia tiubae (K. Schum) Brizicky (Malvaceae) e testes farmacológicos preliminares do canferol 3,7-di-O-α-L-ramnopiranosídeo. Braz. J. Pharmacog. 2005, 15, 23–29.
[48]
Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Intern. 2011, 44, 391–396.