全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Algorithms  2012 

Use of Logistic Regression for Forecasting Short-Term Volcanic Activity

DOI: 10.3390/a5030330

Keywords: logistic regression, eruption forecasting, event tree

Full-Text   Cite this paper   Add to My Lib

Abstract:

An algorithm that forecasts volcanic activity using an event tree decision making framework and logistic regression has been developed, characterized, and validated. The suite of empirical models that drive the system were derived from a sparse and geographically diverse dataset comprised of source modeling results, volcano monitoring data, and historic information from analog volcanoes. Bootstrapping techniques were applied to the training dataset to allow for the estimation of robust logistic model coefficients. Probabilities generated from the logistic models increase with positive modeling results, escalating seismicity, and rising eruption frequency. Cross validation yielded a series of receiver operating characteristic curves with areas ranging between 0.78 and 0.81, indicating that the algorithm has good forecasting capabilities. Our results suggest that the logistic models are highly transportable and can compete with, and in some cases outperform, non-transportable empirical models trained with site specific information.

References

[1]  Newhall, C.G. Volcanology 101 for seismologists. Treatise Geophys. 2007, 4, 351–388, doi:10.1016/B978-044452748-6/00072-9.
[2]  Newhall, C. A Method for Estimating Intermediate and Long-Term Risks from Volcanic Activity, with an Example from Mount St. Helens, Washington; Open File Report 82-396; United States Geological Survey: Reston, VA, USA, 1982.
[3]  Newhall, C. Semiquantitative Assessment of Changing Volcanic Risk at Mount St. Helens, Washington; Open File Report 84-272; United States Geological Survey: Reston, VA, USA, 1984.
[4]  Aspinall, W.P.; Cooke, M.R. Expert Judgement and the Montserrat Volcano Eruption. In Proceedings of the 4th International Conference on Probabilistic Safety Assessment and Management PSAM4, New York City, USA, 13–18 September 1998; 3, pp. 2113–2118.
[5]  Newhall, C.; Hoblitt, R.P. Constructing event trees for Volcanic Crises. Bull. Volcanol. 2002, 64, 3–20, doi:10.1007/s004450100173.
[6]  Aspinall, W.; Woo, G.; Voight, B.; Baxter, P. Evidence-based volcanology: Application to eruption crises. J. Volcanol. Geotherm. Res. 2003, 128, 273–285, doi:10.1016/S0377-0273(03)00260-9.
[7]  Marzocchi, W.; Sandri, L.; Gasparini, P.; Newhall, C.; Boschi, E. Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius. J. Geophys. Res. 2004, 109, doi:10.1029/2004JB003155.
[8]  Marzocchi, W.; Sandri, L.; Selva, J. A Quantitative Model for Volcanic Hazard Assessment. In Statistics in Volcanology; Geological Society for IAVCEI: London, UK, 2006; Volume 1, pp. 31–37.
[9]  Marzocchi, W.; Sandri, L.; Selva, J. BET EF: A probabilistic tool for long and short term eruption forecasting. Bull. Volcanol. 2008, 70, 623–632, doi:10.1007/s00445-007-0157-y.
[10]  Marzocchi, W.; Sandri, L.; Selva, J. BET VH: A probabilistic tool for long term volcanic hazard assessment. Bull. Volcanol. 2010, 72, 705–716, doi:10.1007/s00445-010-0357-8.
[11]  Sobradelo, R.; Marti, J. Bayesian event tree for long term volcanic hazard assessment: Applicationto teide-pico viejo stratovolcanoes, Tenerife, Canary Islands. J. Geophys. Res. 2010, 115, doi:10.1029/2009JB006566.
[12]  Lindsay, J.; Marzocchi, W.; Jolly, G.; Constantinescu, R.; Selva, J.; Sandri, L. Towards real-time eruption forecasting in the Auckland Volcanic Field: Application of BETEF during the New Zealand National Disaster Exercise Ruaumoko. Bull. Volcanol. 2010, 72, 185–204, doi:10.1007/s00445-009-0311-9.
[13]  Poland, M.; Burgmann, R.; Dzurisin, D.; Lisowski, M.; Masterlark, T.; Owen, S.; Fink, J. Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS, leveling, and InSAR. J. Volcanol. Geotherm. Res. 2006, 150, 55–78, doi:10.1016/j.jvolgeores.2005.07.007.
[14]  Bridges, D.L.; Gao, S.S. Spatial variation of seismic b-values beneath Makushin Volcano, Unalaska Island, Alaska. Earth Planet. Sci. Lett. 2002, 245, 408–415, doi:10.1016/j.epsl.2006.03.010.
[15]  Feigl, K.L.; Gasperi, J.; Sigmundsson, F.; Rigo, A. Crustal deformation near Hengill Volcano, Ice-land 1993-1998: Coupling between magmatic activity and faulting inferred from elastic modeling of satellite radar interferograms. J. Geophys. Res. 2000, 105, doi:10.1029/2000JB900209.
[16]  Lu, Z.; Fatland, R.; Wyss, M.; Li, S.; Eichelberger, J.; Dean, K.; Freymueller, J. Deformation of New Trident volcano measured by ERS-1 SAR interferometry, Katmai National Park, Alaska. Geophys. Res. Lett. 1997, 24, 695–698.
[17]  Poland, M.; Bawden, G.; Lisowski, M.; Dzurisin, D. Newly Discovered Subsidence at Lassen Peak, Southern Cascade Range, California, from InSAR and GPS; EOS transaction, 2004 Fall Meeting Supplement; American Geophysical Union: Washington, DC, USA, 2004.
[18]  Hjaltadottir, S.; Vogfjord, K.S.; Slunga, R. Seismic Signs of Magma Pathways Through the Crust in the Eyjafjallajokull Volcano, South Iceland; Technical Report VI 2009-013; Icelandic Meteorological Office: Vedurstofa Islands, Reykjav?k, 2009.
[19]  Lu, Z.; Wicks, C.; Power, J.A.; Dzurisin, D. Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry. J. Geophys. Res. 2000, 105, 21–483.
[20]  Roman, D.C.; Power, J.A. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska. Bull. Volcanol. 2011, 73, 143–153, doi:10.1007/s00445-010-0439-7.
[21]  Lu, Z.; Wicks, C.; Power, J.; Dzurisin, D.; Thatcher, W.; Masterlark, T. Interferometric Synthetic Aperture Radar Studies of Alaska Volcanoes. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 24-28 June 2002; pp. 191–194.
[22]  Wicks, C.W.; Dzurisin, D.; Ingebritsen, S.; Thatcher, W.; Lu, Z.; Iverson, J. Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA. Geophys. Res. Lett. 2002, 29, doi:10.1029/2001GL014205.
[23]  Owen, S.; Segall, P.; Lisowski, M.; Miklius, A.; Murray, M.; Bevis, M.; Foster, J. January 30, 1997 eruptive event on Kilauea Volcano, Hawaii as monitored by continuous GPS. Geophys. Res. Lett. 2000, 27, 2757–2760, doi:10.1029/1999GL008454.
[24]  Lu, Z.; Masterlark, T.; Power, J.; Dzurisin, D.; Wicks, C. Subsidence at Kiska Volcano, Western Aleutians, detected by satellite radar interferometry. Geophys. Res. Lett. 2002, 29, doi:10.1029/2002GL014948.
[25]  Sturkell, E.; Einarsson, P.; Sigmundsson, F.; Hreinsdóttir, S.; Geirsson, H. Deformation of Grimsvotn volcano, Iceland: 1998 eruption and subsequent inflation. Geophys. Res. Lett. 2003, 30, doi:10.1029/2002GL016460.
[26]  Moran, S.C.; Kwoun, O.; Masterlark, T.; Lu, Z. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska. J. Volcanol. Geotherm.Res. 2006, 150, 119–131, doi:10.1016/j.jvolgeores.2005.07.013.
[27]  Mann, D.; Freymueller, J. Volcanic and tectonic deformation on Unimak Island in the Aleutian Arc, Alaska. J. Geophys. Res. 2003, 108, doi:10.1029/2002JB001925.
[28]  Sturkell1, E.; Einarsson, P.; Sigmundsson, F.; Hooper, A.; Ofeigsson, B.G.; Geirsson, H.; lafsson, H.O. Katla and Eyjafjallajokull Volcanoes. Dev. Quat. Sci. 2010, 13, 5–21.
[29]  Cervelli, P.; Segall, P.; Johnson, K.; Lisowski, M.; Miklius, A. Sudden aseismic fault slip on the south flank of Kilauea volcano. Lett. Nat. 2002, 415, 1014–1018, doi:10.1038/4151014a.
[30]  Ofeigsson, B.G.; Hooper, A.; Sigmundsson, F.; Sturkell, E.; Grapenthin, R. Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. J. Geophys.Res. 2011, 116, doi:10.1029/2010JB007576.
[31]  Grapenthin, R.; Ofeigsson, B.G.; Sigmundsson, F.; Sturkell, E.; Hooper, A. Pressure sources versus surface loads: Analyzing volcano deformation signal composition with an application to Hekla volcano, Iceland. Geophys. Res. Lett. 2010, 37, doi:10.1029/2010GL044590.
[32]  Pedersen, R.; Sigmundsson, F. Temporal development of the 1999 intrusive episode in the Eyjafjallajokull volcano, Iceland, derived from InSAR image. Bull. Volcanol. 2006, 68, 377–393, doi:10.1007/s00445-005-0020-y.
[33]  Bonaccorso, A.; Aloisi, M.; Mattia, M. Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data. Geophys. Res. Lett. 2002, 29, doi:10.1029/2001GL014397.
[34]  Lu, Z.; Dzurisin, D.; Biggs, J.; Wicks, C.; McNutt, S. Ground surface deformation patterns, magma supply, and magma storage at Okmok Volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997-2008. J. Geophys. Res. 2010, 115, doi:10.1029/2009JB006969.
[35]  Kwoun, O.I.; Lu, Z.; Neal, C.; Wicks, C. Quiescent deformation of the Aniakchak Caldera, Alaska, mapped by InSAR. Geology 2005, 34, 5–8.
[36]  Jones, J.; Malone, S.D. Mount Hood earthquake activity: Volcanic or tectonic origins? Bull. Seismol. Soc. Am. 2005, 95, 818–832, doi:10.1785/0120040019.
[37]  Patane, D.; Mattia, M.; Aloisi, M. Shallow intrusive process during 2002-2004 and current volcanic activity on Mt.Etna. Etna. Geophys. Res. Lett. 2005, 32, doi:10.1029/2004GL021773.
[38]  Fournier, T.; Freymueller, J. Inflation detected at Mount Veniaminof, Alaska, with campaign GPS. Geophys. Res. Lett. 2008, 35, doi:10.1029/2008GL035503.
[39]  Albino, F.; Pinel, V.; Sigmundsson, F. Influence of surface load variations on eruption likelihood: Application to two Icelandic subglacial volcanoes, Grimsvotn and Katla. Geophys. J. Int. 2010, 181, 1510–1524.
[40]  Angelis, S.D.; McNutt, S.R. Degassing and hydrothermal activity at Mt. Spurr, Alaska during the summer of 2004 inferred from the complex frequencies of long-period events. Geophys. Res. Lett. 2005, 32, doi:10.1029/2005GL022618.
[41]  Coombs, M.L.; Neal, C.A.; Wessels, R.L.; McGimsey, R.G. Geothermal Disruption of Summit Glaciers at Mount Spurr Volcano, 20046: An Unusual Manifestation of Volcanic Unrest; Professional Paper 1732-B; United States Geological Survey: Reston, VA, USA, 2005.
[42]  Bonaccorso, A.; Bonforte, A.; Guglielmino, F.; Palano, M.; Puglisi, G. Composite ground deformation pattern forerunning the 2004-2005 Mount Etna Eruption. J. Geophys. Res. 2006, 111, doi:10.1029/2005JB004206.
[43]  Lisowski, M.; Dzursin, D.; Denlinger, R.P.; Iwatsubo, E.Y. Analysis of GPS-Measured Deformation Associated with the 2004–2006 Dome-Building Eruption of Mount St. Helens, Washington; Professional Paper 1750; United States Geological Survey: Reston, VA, USA, 2008.
[44]  Cervelli, P.F.; Fournier, T.; Freymueller, J.; Power, J.A. Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska. Geophys. Res. Lett. 2006, 33, doi:10.1029/2006GL027219.
[45]  Neal, C.A.; McGimsey, R.G.; Dixon, J.P.; Manevich, A.; Rybin, A. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory; Scientific Investigations Report 20085214; United States Geological Survey: Reston, VA, USA, 2009.
[46]  McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Malik, N.; Chibisova, M. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory; Scientific Investigations Report 20105242; United States Geological Survey: Reston, VA, USA, 2011.
[47]  Lu, Z.; Dzurisin, D.; Wicks, C.; Power, J. Diverse deformation patterns of Aleutian volcanoes from InSAR; European Space Agency Presentation. Available online: http://earth.esa.int/fringe07/participants/227/pres_227.pdf (accessed on 25 May 2011).
[48]  Jakobsdottir, S.S.; Roberts, M.J.; Gudmundsson, G.B.; Geirsson, H.; Slunga, R. Earthquake Swarms at Upptyppingar, North-East Iceland: A Sign of Magma Intrusion. Stud. Geophys. Geod. 2008, 52, 513–528, doi:10.1007/s11200-008-0035-x.
[49]  Chang, W.L.; Smith, R.B.; Farrell, J.; Puskas, C.M. An extraordinary episode of Yellowstone caldera uplift, 2004-2010, from GPS and InSAR observation. Geophys. Res. Lett. 2010, 37, doi:10.1029/2010GL045451.
[50]  Fournier, T.J.; Pritchard, M.E.; Riddick, S.N. Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesi. Geochem. Geophys. Geosyst. 2010, 11, doi:10.1029/2009GC002558.
[51]  Decriem, T.; Arnadottir, J.D.; Hooper, A.; Geirsson, H.; Sigmundsson, F.; Keiding, M.; Ofeigsson, B.G.; Hreinsdottir, S.; Einarsson, P.; LaFemina, P.; Bennett4, R.A. InSAR and GPS Measurements of the 29 May 2008 South Iceland Earthquake Sequence. In Proceedings of the Fringe Workshop, Frascati, Italy, 30 November–4 December 2009.
[52]  Lu, Z.; Masterlark, T.; Dzurisin, D. Interferometric synthetic aperture radar study of Okmok Volcano, Alaska, 1992-2003: Magma supply dynamics and post-emplacement lava flow deformation. J. Geophys. Res. 2005, 110, doi:10.1029/2004JB003148.
[53]  Ruppert, N.A.; Prejean, S.; Hansen, R.A. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters. J. Geophys. Res 2011, 116, doi:10.1029/2010JB007435.
[54]  Sigmundsson, F.; Hreinsdottir, S.; Hooper, A.; Arnadottir, T.; Pedersen, R.; Roberts, M.J.; Oskarsson, N.; Auriac, A.; Decriem, J.; Einarsson, P.; et al. Intrusion triggering of the 2010 Eyjafjalljokull explosive eruption. Nature 2010, 468, doi:10.1038/nature09558.
[55]  Press, S.J.; Wilson, S. Choosing between logistic regression and discriminant analysis. J. Am. Stat. Assoc. 1978, 73, 699–705, doi:10.1080/01621459.1978.10480080.
[56]  Kleinbaum, D.G.; Klein, M. Logistic Regression: A Self Learning Text; Springer: Berlin/Heidelberg, Germany, 2010.
[57]  Neter, J.; Wasserman, W.; Kutner, M.K. Applied Linear Regression Models; Richard, D., Ed.; Irwin, INC.: De Witt, IA, USA, 1989.
[58]  Samanta, B.; Bird, G.L.; Kuijpers, M.; Zimmerman, R.A.; Jarvik, G.P.; Wernovsky, G.; Clancy, R.R.; Licht, D.J.; Gaynor, J.W.; Nataraj, C. Prediction of preiventricular leukomalacia Part 1: Selection of hemodynamic features using logistic regression and decision tree algorithms. Artif. Intell. Med. 2009, 46, 201–215, doi:10.1016/j.artmed.2008.12.005.
[59]  Chiu, L.S. Estimating the exceedance probability of rain rate by logistic regression. J. Geophys. Res. 1990, 95, 2217–2227, doi:10.1029/JD095iD03p02217.
[60]  Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491, doi:10.1080/01431160412331331012.
[61]  Moran, S.C.; Newhall, C.; Roman, D.C. Failed magmatic eruptions: Last-stage cessation of magma. Bull. Volcanol. 2011, 73, 115–122, doi:10.1007/s00445-010-0444-x.
[62]  Institute, S. Global Volcanism Program Web Page. Available online: http://www.volcano.si.edu/ (accessed on 20 February 2011).
[63]  Junek, W.N.; Jones, W.L.; Woods, M.T. Detecting developing volcanic unrest. In Proceedings of the IEEE Southeast Con., Orlando, USA, 15–18 March 2012; pp. 1–4.
[64]  Weiss, N.A. Introductory Statistics; Addison Wesley: Boston, USA, 2007.
[65]  Junek, W.N.; Jones, W.L.; Woods, M.T. Locating incipient volcanic vents using multidisciplinary remote sensing data and source modeling information. IEEE Geosci. Remote Sens. Lett. 2012. in press.
[66]  Lasko, T.A.; Bhagwat, J.G.; Zou, K.H.; Ohno-Machado, L. The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inf. 2005, 38, 404–415, doi:10.1016/j.jbi.2005.02.008.
[67]  Showstack, R. Iceland’s Grimsvotn volcano erupts. EOS Trans. AGU 2011, 92, doi:10.1029/2011EO220003.
[68]  Icelandic Meteorological Office Website for the 2011 Grimsvotn Eruption. 2011. Available online: http://hraun.vedur.is/ja/vatnajokulsvoktun/english.html (accessed on 1 November 2011).
[69]  Institute of Earth Science Website for the 2011 Grimsvotn Eruption. 2011. Available online: http://earthice.hi.is.page/ies GV2011 eruption/ (accessed on 1 November 2011).
[70]  Mogi, K. Relationships between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull. Earthq. Res. Inst. 1958, 36, 99–134.
[71]  Sturkell, E.C.; Sigmundsson, F.; Einarsson, P.; Hreinsdottir, S.; Villemin, T.; Geirsson, H.; Ofeigsson, B.G.; Jouanne, F.; Bjornsson, H.; Gudmundsson, G.B.; et al. Deformation Cycle of the Grimsvotn Sub-Glacial Volcano, Iceland, Measured by GPS. In Proceedings of the Abstract V31H-04 presented at the Fall Meeting, AGU, San Francisco, CA, USA, 5–9 December 2011.
[72]  World Organization of Volcano Observatories WOVOdat: A database of volcanic unrest. Available online: http://www.wovodat.org/ (accessed on 10 October 2011).
[73]  Wessel, S.; Smith, W. New, improved version of the generic mapping tool released. EOS Trans. AGU 1998, 79, doi:10.1029/98EO00426.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133