全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Algorithms  2012 

An Agent-Based Fuzzy Collaborative Intelligence Approach for Predicting the Price of a Dynamic Random Access Memory (DRAM) Product

DOI: 10.3390/a5020304

Keywords: fuzzy collaborative intelligence, dynamic random access memory, prediction, agent, price

Full-Text   Cite this paper   Add to My Lib

Abstract:

Predicting the price of a dynamic random access memory (DRAM) product is a critical task to the manufacturer. However, it is not easy to contend with the uncertainty of the price. In order to effectively predict the price of a DRAM product, an agent-based fuzzy collaborative intelligence approach is proposed in this study. In the agent-based fuzzy collaborative intelligence approach, each agent uses a fuzzy neural network to predict the DRAM price based on its view. The agent then communicates its view and forecasting results to other agents with the aid of an automatic collaboration mechanism. According to the experimental results, the overall performance was improved through the agents’ collaboration.

References

[1]  Tarui, Y.; Tarui, T. New DRAM pricing trends: The Bi rule. IEEE Circuits Devices Mag. 1991, 7, 44–45, doi:10.1109/101.75928.
[2]  Azadeh, A.; Ebrahimipour, V.; Ghoreishi, F. A fuzzy simulation algorithm for estimating availability functions in time-dependent complex systems. Int. J. Ind. Syst. Eng. 2011, 7, 429–453.
[3]  Box, G.E.P.; Jenkins, G.M.; Gregory, C.R. Time Series Analysis:Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1976; pp. 1–746.
[4]  Chen, T. An intelligent mechanism for lot output time prediction and achievability evaluation in a wafer fab. Comput. Ind. Eng. 2008, 54, 77–94, doi:10.1016/j.cie.2007.06.036.
[5]  Chen, T. A collaborative fuzzy-neural approach for forecasting the price of a DRAM product. Int. J. Technol. Intell. Plann. 2011, 7, 95–109, doi:10.1504/IJTIP.2011.043196.
[6]  Chen, T. A collaborative fuzzy-neural approach for long-term load forecasting in Taiwan. Comput. Ind. Eng. 2012. in press.
[7]  Chen, T. A hybrid fuzzy and neural approach with virtual experts and partial consensus for DRAM price forecasting. Int. J. Innov. Comput. Inf. Control 2012, 8, 583–597.
[8]  Chen, T.; Wang, Y.-C.; Tsai, H.-R. Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM-FBPN-ensemble approach with multiple buckets and partial normalization. Int. J. Adv. Manuf. Technol. 2009, 42, 1206–1216.
[9]  Chen, T.; Wang, Y.C.; Wu, H.C. A fuzzy-neural approach for remaining cycle time estimation in a semiconductor manufacturing factory—a simulation study. Int. J. Innov. Comput. Inf. Control 2009, 5, 2125–2139.
[10]  Miranda, L.C.M.; Lima, C.A.S. Long range trends in the automobile industry output: Depensation effects in the logistic modeling. Int. J. Technol. Intell. Plan. 2011, 7, 33–53, doi:10.1504/IJTIP.2011.041252.
[11]  Cupertino, C. A Reliable Forecast of DRAM Prices Now Available; Business Wire: Cupertino, CA, USA, 1999.
[12]  Grimm, B.T. Price indexes for selected semiconductors 1974-96. Surv. Curr. Bus. 1998, 78, 8–24.
[13]  Chen, T.; Wang, Y.-C.; Tsai, H.-R. Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM-FBPN-ensemble approach with multiple buckets and partial normalization. Int. J. Adv. Manuf. Technol. 2009, 42, 1206–1216, doi:10.1007/s00170-008-1665-4.
[14]  Triplett, J. High tech industry productivity and hedonic price indexes. In Industry Productivity:International Comparison and Measurement Issues. In Proceedings of OECD Paris, France, March, 1996; pp. 119–142.
[15]  Chen, T. A hybrid fuzzy and neural approach for DRAM price forecasting. Comput. Ind. 2011, 62, 196–204, doi:10.1016/j.compind.2010.10.012.
[16]  Lepselter, M.P.; Sze, S.M. DRAM pricing trends—the π rule. IEEE Circuits Devices Mag. 1985, 1, 53–54.
[17]  Chen, T.; Wang, M.-J.J. Forecasting methods using fuzzy concepts. Fuzzy Sets Syst. 1999, 105, 339–352, doi:10.1016/S0165-0114(97)00265-0.
[18]  Chen, T.; Wang, Y.-C. Incorporating the FCM-BPN approach with nonlinear programming for internal due date assignment in a wafer fabrication plant. Robot. Comput. Integr. Manuf. 2010, 26, 83–91, doi:10.1016/j.rcim.2009.04.001.
[19]  Tseng, F.M.; Tzeng, G.H.; Yu, H.C.; Yuan, B.J.C. Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy Sets Syst. 2001, 118, 9–19, doi:10.1016/S0165-0114(98)00286-3.
[20]  Chen, T.; Wang, Y.-C. Incorporating the FCM-BPN approach with nonlinear programming for internal due date assignment in a wafer fabrication plant. Robot. Comput. Integr. Manuf. 2010, 26, 83–91, doi:10.1016/j.rcim.2009.04.001.
[21]  Pedrycz, W. Collaborative fuzzy clustering. Pattern Recognit. Lett. 2002, 23, 1675–1686.
[22]  Pedrycz, W. Collaborative architectures of fuzzy modeling. Lect. Notes Comput. Sci. 5050, 117–139.
[23]  Li, J.-H.; Li, X.-S.; Liu, H.-L.; Han, X.-J.; Zhang, J. Fuzzy collaborative filtering approach based on semantic distance. Adv. Int. Soft Comput. 2009, 62, 187–195, doi:10.1007/978-3-642-03664-4_21.
[24]  Loia, V.; Pedrycz, W. P-FCM: A proximity-based fuzzy clustering for user-centered web applications. Int. J. Approx. Reason. 2003, 34, 121–144, doi:10.1016/j.ijar.2003.07.004.
[25]  Abraham, A.; Baikunth, N.; Mahanti, P.K. Hybrid intelligent systems for stock market analysis. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2001.
[26]  Chen, T.; Lin, Y.C. A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2008, 16, 35–58, doi:10.1142/S0218488508005030.
[27]  Falc’on, R.; Depaire, B.; Vanhoof, K.; Abraham, A. Towards a suitable reconciliation of the findings in collaborative fuzzy clustering. In Proceedings of the Eighth International Conference on Intelligent Systems Design and Applications, Kaohsiung, Taiwan, 26-28 November 2008; pp. 652–657.
[28]  Jain, L.C.; Martin, N.M. Fusion of Neural Networks, Fuzzy Sets, and Genetic Algorithms:Industrial Applications; CRC Press: New York, USA, 2009; pp. 1–368.
[29]  Kaufmann, A.; Gupta, M.M. Fuzzy Mathematical Models in Engineering and Management Science; Elsevier Science Inc.: New York, NY, USA, 1988; pp. 1–362.
[30]  Kumar, M.; Yadav, S.P.; Kumar, S. A new approach for analysing the fuzzy system reliability using intuitionistic fuzzy number. Int. J. Ind. Syst. Eng. 2011, 8, 135–156.
[31]  Prakash, A.; Deshmukh, S.G. Modelling of FMS control policy: AIS-based fuzzy expert system. Int. J. Ind. Syst. Eng. 2011, 8, 38–60.
[32]  Selim, H.; Araz, C.; Ozkarahan, I. Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach. Transp. Res. E-LOG 2008, 44, 396–419, doi:10.1016/j.tre.2006.11.001.
[33]  Shih, T.-S.; Su, J.-S.; Lee, H.-M. Fuzzy estimation of one vague missing value in two-factor experiments. Int. J. Innov. Comput. Inf. Control 2009, 5, 4971–4980.
[34]  Eraslan, E. The estimation of product standard time by artificial neural networks in the molding industry. Math. Probl. Eng. 2009, doi:10.1155/2009/527452.
[35]  Hannan, E.J.; Rissanen, J. Recursive estimation of mixed autogressive-moving average order. Biometrika 1982, 69, 81–94, doi:10.1093/biomet/69.1.81.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133