Determination of Morphological Parameters of Supported Gold Nanoparticles: Comparison of AFM Combined with Optical Spectroscopy and Theoretical Modeling versus TEM
The morphology of small gold particles prepared by Volmer–Weber growth on sapphire substrates have been investigated by two different characterization techniques. First, by non-extensive atomic force microscopy (AFM) in combination with optical spectroscopy and modeling of the optical properties using a theoretical model, recently developed in our group. Second, by extensive transmission electron microscopy (TEM). Comparing the results obtained with both techniques demonstrate that for small gold nanoparticles within the quasistatic limit, the morphological properties can be precisely determined by an appropriate theoretical modeling of the optical properties in combination with simple AFM measurements. The apparent mean axial ratio of the nanoparticles, i.e., the axial ratio that corresponds to the center frequency of the ensemble plasmon resonance, is obtained easily from the extinction spectrum. The mean size is determined by the nanoparticle number density and the amount of deposited material, measured by AFM and a quartz micro balance, respectively. To extract the most probable axial ratio of the nanoparticle ensemble, i.e., the axial ratio that corresponds to the most probable nanoparticle size in the ensemble, we apply the new theoretical model, which allows to extract the functional dependence of the nanoparticle shape on its size. The morphological parameters obtained with this procedure will be afterwards compared to extensive TEM measurements. The results obtained with both techniques yield excellent agreement. For example, the lateral dimensions of the nanoparticles after deposition of 15.2 × 10 15 atoms/cm 2 of gold has been compared. While a mean lateral diameter of (13 ± 2) nm has been extracted from AFM, optical spectroscopy and modeling, a value of (12 ± 2) nm is derived from TEM. The consistency of the results demonstrate the precision of our new model. Moreover, since our theoretical model allows to extract the functional dependence of the nanoparticle size and shape, a relatively simple analysis is sufficient for a full characterization of small noble metal nanoparticles.
References
[1]
Valden, M.; Lai, X.; Goodman, D. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650, doi:10.1126/science.281.5383.1647.
[2]
Chen, M.; Goodman, D. The structure of catalytically active gold on titania. Science 2004, 306, 252–255, doi:10.1126/science.1102420.
[3]
Zijlstra, P.; Chong, J.; Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 2009, 459, 410–413, doi:10.1038/nature08053.
[4]
Krenn, J. Nanoparticle waveguides: Watching energy transfer. Nat. Mater. 2003, 2, 210–211, doi:10.1038/nmat865.
[5]
Morarescu, R.; Englert, L.; Kolaric, B.; Damman, P.; Vallée, R.; Baumert, T.; Hubenthal, F.; Tr?ger, F. Tuning nanopatterns on fused silica substrates: A theoretical and experimental approach. J. Mater. Chem. 2011, 21, 4076–4081, doi:10.1039/c0jm03829f.
[6]
Hubenthal, F.; Blázquez Sánchez, D.; Borg, N.; Schmidt, H.; Kronfeldt, H.D.; Tr?ger, F. Tailor-made metal nanoparticles as SERS substrates. Appl. Phys. B 2009, 95, 351–359, doi:10.1007/s00340-009-3373-7.
[7]
Hubenthal, F.; Morarescu, R.; Englert, L.; Haag, L.; Baumert, T.; Tr?ger, F. Parallel generation of nanochannels in fused silica with a single femtosecond laser pulse: Exploiting the optical near fields of triangular nanoparticles. Appl. Phys. Lett. 2009, 95, 063101-1–063101-3.
[8]
Morarescu, R.; Englert, L.; Kolaric, B.; Damman, P.; Vallée, R.; Baumert, T.; Hubenthal, F.; Tr?ger, F. Tuning nanopatterns on fused silica substrates: A theoretical and experimental approach. J. Mater. Chem. 2011, 21, 4076–4081, doi:10.1039/c0jm03829f.
[9]
Ossig, R.; Kwon, Y.-H.; Hubenthal, F.; Kronfeldt, H.-D. Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS. Appl. Phys. B 2012, 106, 835–839, doi:10.1007/s00340-011-4866-8.
[10]
Morarescu, R.; Tr?ger, F.; Hubenthal, F. Surface plasmon resonance spectroscopy for in situ sensing of molecular nanowire formation. In Recent Researches in Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics; Bojkovic, Z., Kacprzyk, J., Mastorakis, N., Mladenov, V., Revetria, R., Zadeh, L.A., Zemliak, A., Eds.; WSEAS Press: Cambridge, UK, 2011; pp. 308–313.
[11]
Kwon, Y.-H.; Ossig, R.; Hubenthal, F.; Kronfeldt, H.-D. Influence of surface plasmon resonance wavelength on SERS activity of naturally grown silver nanoparticle ensemble. J. Raman Spec. 2012.
[12]
Mie, G. Beitr?ge zur Optik trüber Medien, speziell kolloidaler Metall?sungen. Annalen der Physik 1908, 25, 377–445, doi:10.1002/andp.19083300302.
[13]
Bohren, C.; Huffman, D. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1983.
[14]
Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: Berlin, Germany, 1995.
[15]
Hubenthal, F. Noble metal nanoparticles: Synthesis and applications. In Comprehensive Nanoscience and Technology; Andrews, D.L., Scholes, G.D., Wiederrecht, G.P., Eds.; Oxford Academic Press: New York, NY, USA, 2011; Volume 1, pp. 375–435.
[16]
Gans, R. über die F]orm ultramikroskopischer Goldteilchen. Ann. Physik 1912, 37, 881–900, doi:10.1002/andp.19123420503.
[17]
Hubenthal, F. Nanoparticles and their tailoring with laser light. Eur. J. Phys. 2009, 30, S49–S61, doi:10.1088/0143-0807/30/4/S05.
[18]
Hubenthal, F.; Borg, N.; Weidner, T.; Siemeling, U.; Tr?ger, F. Gold nanoparticle growth on self-assembled monolayers of ferrocenyl-substituted terpyridine on graphite. Appl. Phys. A 2009, 94, 11–17, doi:10.1007/s00339-008-4888-1.
[19]
Hubenthal, F.; Borg, N.; Tr?ger, F. Optical properties and ultrafast electron dynamics in gold-silver alloy and core-shell nanoparticles. Appl. Phys. B 2008, 93, 39–45, doi:10.1007/s00340-008-3146-8.
[20]
Hilger, A.; Tenfelde, M.; Kreibig, U. Silver nanoparticles deposited on dielectric surfaces. Appl. Phys. B 2001, 73, 361–372, doi:10.1007/s003400100712.
[21]
Kreibig, U. Interface-induced dephasing of Mie plasmon polaritons. Appl. Phys. B 2008, 93, 79–89, doi:10.1007/s00340-008-3213-1.
Hubenthal, F.; Hendrich, C.; Vartanyan, T.; Tr?ger, F. Determination of fundamental morphological parameters of supported nanoparticle ensembles: Extracting the functional dependence between nanoparticle shape and size. Plasmonics 2012.
[24]
Hicks, E.; Zou, S.; Schatz, G.; Spears, K.; van Duyne, R.; Gunnarsson, L.; Rindzevicius, T.; Kasemo, B.; K?ll, M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005, 5, 1065–1070, doi:10.1021/nl0505492.
Hu, M.; Petrova, H.; Sekkinen, A.; Chen, J.; McLellan, J.; Li, Z.; Marquez, M.; Li, X.; Xia, Y; Hartland, G. Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy. J. Phys. Chem. B 2006, 110, 19923–19928, doi:10.1021/jp0621068. 17020378
[27]
Wu, W.; Dey, D.; Memis, O.; Katsnelson, A.; Mohseni, H. Fabrication of large area periodic nanustructures using nanosphere photolithograpy. Nanoscale Res. Lett. 2008, 3, 351–354, doi:10.1007/s11671-008-9164-y.
[28]
Marty, R.; Arbouet, A.; Girard, C.; Margueritat, J.; Gonzalo, J.; Afonso, C. Sculpting nanometer-sized light landscape with plasmonic nanocolumns. J. Chem. Phys. 2009, 131, 224707:1–224707:8.
[29]
Resta, V.; Siegel, J.; Bonse, J.; Gonzalo, J.; Afonso, C.; Piscopiello, E.; Van Tenedeloo, G. Sharpening the shape distribution of gold nanoparticles by laser irradiation. J. Appl. Phys. 2006, 100, 084311:1–084311:6.
[30]
Gonzalo, J.; Perea, A.; Babonneau, D.; Afonso, C.; Beer, N.; Barnes, J.P.; Petford-Long, A.; Hole, D.; Townsend, P. Competing processes during the production of metal nanoparticles by pulsed laser deposition. Phys. Rev. B 2005, 71, 125420-1–125420-8.
[31]
Barnes, J.P.; Petford-Long, A.; Doole, R.; Serna, R.; Gonzalo, J.; Suárez-García, A.; Afonso, C.; Hole, D. Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition. Nanotechnology 2002, 13, 465–470, doi:10.1088/0957-4484/13/4/305.
[32]
Novo, C.; Gomez, D.; Perez-Juste, J.; Zhang, Z.; Petrova, H.; Reismann, M.; Mulvaney, P.; Hartland, G. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys. Chem. Chem. Phys. 2006, 8, 3540–3546, doi:10.1039/b604856k. 16871343
[33]
Pyatenko, A.; Shimokawa, K.; Yamaguchi, M.; Nishimura, O.; Suzuki, M. Synthesis of silver nanoparticles by laser ablation in pure water. Appl. Phys. A 2004, 79, 803–806.
[34]
Dadosh, T.; Sperling, J.; Bryant, G.; Breslow, R.; Shegai, T.; Dyshel, M.; Haran, G.; Bar-Joseph, I. Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer. ACS Nano 2009, 3, 1988–1994, doi:10.1021/nn900422w. 19534506
[35]
Pastoriza-Santos, I.; Liz-Marzán, L. Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem. 2008, 18, 1724–1737, doi:10.1039/b716538b.
[36]
Stalmashonak, A.; Seifert, G.; Graener, H. Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation. Optics Lett. 2007, 32, 3215–3217, doi:10.1364/OL.32.003215.
[37]
Vogel, F.; Tr?ger, F.; Hubenthal, F. A new route for mass production of uniform metal nanoparticles in water by means of laser light induced processes. J. Nanosci. Nanotechnol. 2011, 11, 2368–2375, doi:10.1166/jnn.2011.3147. 21449395
[38]
Watanabe, K.; Menzel, D.; Nilius, N.; Freund, H.J. Photochemistry on metal nanoparticles. Chem. Rev. 2006, 106, 4301–4320, doi:10.1021/cr050167g.
[39]
MacDonald, K.; Fedotov, V.; Zheludev, N. Optical nonlinearity resulting from a light-induced structural transition in gallium nanoparticles. Appl. Phys. Lett. 2003, 82, 1087–1089, doi:10.1063/1.1543644.
[40]
Hubenthal, F. Ultrafast dephasing time of localized surface plasmon polariton resonance and the involved damping mechanisms in colloidal gold nanoparticles. Prog. Surf. Sci. 2007, 82, 378–387, doi:10.1016/j.progsurf.2007.03.005.
[41]
Hubenthal, F.; Hendrich, C.; Tr?ger, F. Damping of the localized surface plasmon polariton resonance of gold nanoparticles. Appl. Phys. B 2010, 100, 225–230, doi:10.1007/s00340-010-4064-0.
[42]
Ouacha, H.; Hendrich, C.; Hubenthal, F.; Tr?ger, F. Laser-assisted growth of gold nanoparticles: Shaping and optical characterization. Appl. Phys. B 2005, 81, 663–668, doi:10.1007/s00340-005-1910-6.
[43]
Campbell, C. Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf. Sci. Rep. 1997, 27, 1–111, doi:10.1016/S0167-5729(96)00011-8.
[44]
Stietz, F. Lasermanipulation of the size and shape of supported nanoparticles. Appl. Phys. A 2001, 72, 381–394, doi:10.1007/s003390100757.
[45]
Grabar, K.; Brown, K.; Keating, C.; Stranick, S. Nanoscale characterization of gold colloidmonolayers: a comparison of four techniques. Anal. Chem. 1997, 69, 471–477, doi:10.1021/ac9605962.
[46]
Yamaguchi, T.; Yoshida, S.; Kinbara, A. Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 1974, 21, 173–187, doi:10.1016/0040-6090(74)90099-6.
[47]
Hendrich, C. Untersuchung der Elektronendynamik in Goldnanoteilchen durch Messung der Dephasierungszeit des Oberfl?chenplasmons mit spektralem LochbrennenPh.D. Thesis, Universit?t Kassel, Kassel, Germany, 2004.
[48]
Ziegler, T. Dephasierungszeit des Oberfl?chenplasmon-Polaritons: Spektrales Lochbrennen an Edelmetall-NanoteilchenDiploma Thesis, Universit?t Kassel, Kassel, Germany, 2003.
[49]
Wenzel, T.; Bosbach, J.; Stietz, F.; Tr?ger, F. In situ determination of the shape of supported metal clusters during growth. Surf. Sci. 1999, 432, 257–264, doi:10.1016/S0039-6028(99)00546-4.
[50]
Xu, G.; Tazawa, M.; Jin, P.; Nakao, S. Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence. Appl. Phys. A 2005, 80, 1535–1540, doi:10.1007/s00339-003-2395-y.
[51]
Bouwen, W.; Kunnen, E.; Temst, K.; Thoen, P.; van Bael, M.; Vanhoutte, F.; Weidele, H.; Lievens, P.; Silverans, R. Characterization of granular Ag films grown by low-energy cluster beam deposition. Thin Solid Films 1999, 354, 87–92, doi:10.1016/S0040-6090(99)00571-4.
[52]
H?vel, H.; Becker, T.; Bettac, A.; Reihl, R.; Tschudy, M.; Williams, E. Controlled cluster condensation into preformed nanometer-sized pits. J. Appl. Phys. 1997, 81, 154-1–154-5, doi:10.1063/1.364003.
[53]
Maxwell-Garnett, J. Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. 1904, 203, 385–420, doi:10.1098/rsta.1904.0024.
[54]
Maxwell-Garnett, J. Colours in metal glasses, in metallic films, and in metallic solution. II. Philos. Trans. Roy. Soc. 1906, 205, 237–288, doi:10.1098/rsta.1906.0007.
[55]
Lichtenecker, K. Die Dielektrizit?tskonstante natürlicher und künstlicher Mischk?rper. Physik Z 1926, 27, 115–158.
[56]
Sihvola, A. Electromagnetic Mixing Formulas and Applications; IEE Press: Stevenage, UK, 1999.
[57]
Landau, L.; Lifschitz, E. Lehrbuch der theoretischen Physik VIII; Akademie Verlag: Berlin, Germany, 1974.
[58]
Beer, A. Einleitung in die h?here Optik; Vieweg: Braunschweig, Germany, 1853.
[59]
Li, X.; Tamada, K.; Baba, A.; Knoll, W.; Hara, M. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. J. Chem. Phys. B 2006, 110, 15755–15762, doi:10.1021/jp062004h.
[60]
Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes in C, 2nd ed.; Cambridge University Press: New York, NY, USA, 1992.