全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SA-DBSCAN:A self-adaptive density-based clustering algorithm
SA-DBSCAN:一种自适应基于密度聚类算法

Keywords: DBSCAN,SA-DBSCAN
数据挖掘
,聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

DBSCAN is a classic density-based clustering algorithm. It can automatically determine the number of clusters and treat clusters of arbitrary shapes. In the clustering process of DBSCAN, two parameters, Eps and minPts,have to be specified by uses. In this paper an adaptive algorithm named SA-DBSCAN was introduced to determine the two parameters automatically via analysis of the statistical characteristics of the dataset, which enabled clustering process of DBSCAN fully automated. Experimental results indicate that SA-DBSCAN can select appropriate parameters and gain a rather high validity of clustering.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133