This paper analyzes how recommender systems can be applied to current e-learning systems to guide learners in personalized inclusive e-learning scenarios. Recommendations can be used to overcome current limitations of learning management systems in providing personalization and accessibility features. Recommenders can take advantage of standards-based solutions to provide inclusive support. To this end we have identified the need for developing semantic educational recommender systems, which are able to extend existing learning management systems with adaptive navigation support. In this paper we present three requirements to be considered in developing these semantic educational recommender systems, which are in line with the service-oriented approach of the third generation of learning management systems, namely: (i) a recommendation model; (ii) an open standards-based service-oriented architecture; and (iii) a usable and accessible graphical user interface to deliver the recommendations.
References
[1]
Terveen, L.G.; Hill, W. Beyond Recommender Systems: Helping People Help Each Other. In HCI in the New Millennium; Carroll, J., Ed.; Addison Wesley: Boston, MA, USA, 2001.
[2]
Burke, R. Hybrid recommender systems: Survey and experiments. User-Model. User-Adapt. Interact. 2002, 12, 331–370.
Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749.
[5]
Schafer, J.B.; Konstan, J.A.; Riedl, J. E-commerce recommendation applications. Data Min. Knowl. Discov. 2001, 5, 115–152.
[6]
Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Analysis of Recommendation Algorithms for Ecommerce. Proceedings of the ACM Conference on Electronic Commerce, Mineapolis, MN, USA, 17–20 October 2000; pp. 158–167.
[7]
Santos, O.C.; Boticario, J.G. Educational Recommender Systems and Techniques: Practices and Challenges; IGI Publisher: Hershey, PA, USA, 2011. in press.
[8]
Manouselis, N.; Drachsler, H.; Vuorikari, R.; Hummel, H.; Koper, R. Recommender Systems in Technology Enhanced Learning. In Recommender Systems Handbook: A Complete Guide for Research Scientists and Practitioners; Kantor, P., Ricci, F., Rokach, L., Shapira, B., Eds.; Springer: Berlin, Germany, 2010.
[9]
Drachsler, D.; Hummel, H.G.K.; Koper, R. Identifying the goal, user model and conditions of recommender systems for formal and informal learning. J. Digital Inf. 2009, 10, 1–17.
[10]
Moreno, G.; Martinez-Normand, L.; Boticario, J.G.; Fabregat, R. Research on standards supporting A2UN@: Adaptation and accessibility for All in higher education. CEUR Workshop Proc. 2009, 495, 1–10.
Kelly, B.; Sloan, D.; Brown, S.; Seale, J.; Petrie, H.; Lauke, P.; Ball, S. Accessibility 2.0: People, Policies and Processes. Proceedings of the 2007 International Cross-disciplinary Conference on Web Accessibility (W4A), Banff, Canada, 7–8 May 2007.
[13]
Lanzilotti, R.; Ardito, C.; Costabile, M.F.; Angeli, A.D. eLSE Methodology: A systematic approach to the e-learning systems evaluation. Educ. Technol. Soc. 2006, 9, 42–53.
[14]
Seale, J.L.; Draffan, E.A.; Wald, M. Exploring Disabled Learners' Experiences of E-learning: LEXDIS Project Report; University of Southampton: Southampton, UK, 2008.
[15]
Sawyer, R.K. Optimizing Learning: Implications of Learning Sciences Research. In Innovating to Learn, Learning to Innovate; OECD: Paris, France, 2008.
[16]
Barajas, M.; Gannaway, G. Implementing e-learning in the traditional higher education institution. Higher Educ. Eur. 2007, 32, 111–119.
[17]
Mu?oz-Merino, P.J.; Delgado-Kloos, C.; Fernández-Naranjo, J. Enabling interoperability for LMS educational services. Comput. Stand. Interfaces 2009, 31, 484–498.
[18]
Edutools. Avalable online: http://www.edutools.info/index.jsp?pj=1 (accessed on 8 July 2011).
[19]
Hauger, D.; Kock, M. State of the Art of Adaptivity in E-Learning Platforms. Proceedings of the Workshop Adaptivity and User Modeling in Interactive Systems (ABIS), Halle/Salle, Germany, 24-26 September 2007.
[20]
Dagger, D.; O'Connor, A.; Lawless, S.; Walsh, E.; Wade, V.P. Service-oriented e-learning platforms. From Monolithic systems to flexible services. IEEE Internet Comput. 2007, 3, 28–35.
[21]
Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. Mag. 2001, 5.
[22]
Santos, O.C.; Boticario, J.G.; Raffenne, E.; Granado, J.; Rodríguez-Ascaso, A.; Gutiérrez y Restrepo, E. A Standards-Based Framework to Support Personalisation, Adaptation and Interoperability in Inclusive Learning Scenarios. In Handbook of Research on E-Learning Standards and Interoperability: Frameworks and Issues; Lazarinis, F., Green, S., Person, E., Eds.; IGI Publisher: Hershey, PA, USA, 2010; pp. 126–169.
[23]
Boticario, J.G.; Santos, O.C. An open IMS-based user modelling approach for developing adaptive LMS. J. Interact. Media Educ. 2007, 2, 1–19.
[24]
Drachsler, H. Navigation Support for Learners in Informal Learning Networks; Open Universiteit Nederland: Heerlen, The Netherlands, 2009.
[25]
Drachsler, H.; Bogers, T.; Vuorikari, R.; Verbert, K.; Duval, E.; Manouselis, N.; Beham, G.; Lindstaedt, S.; Stern, H.; Friedrich, M.; Wolpers, M. Issues and Considerations Regarding Sharable Data Sets for Recommender Systems in Technology Enhanced Learning. Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL 2010), Barcelona, Spain, 29–30 September 2010; pp. 2849–2858.
[26]
Bozo, J.; Alarcón, R.; Iribarra, S. Recommending Learning Objects According to a Teachers' Contex Model. In Sustaining TEL: From Innovation to Learning and Practice; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2010; Volume 6383, pp. 470–475.
[27]
Verbert, K.; Drachsler, H.; Manouselis, N.; Wolpers, M.; Vuorikari, R.; Duval, E. Dataset-driven Research for Improving Recommender Systems for Learning. Proceedings of the 1st International Conference Learning Analytics & Knowledge, Banff, Canada, 27 February–1 March 2011.
Manouselis, N.; Vuorikari, R.; Van Assche, F. Collaborative recommendation of e-learning resources: An experimental investigation. J. Comput. Assist. Learn. 2010, 26, 227–242.
[30]
Peis, E.; Morales-del-Castillo, J.M.; Delgado-López, J.A. Analysis of the state of the topic. Hipertext.net 2008, 6.
[31]
Santos, O.C.; Boticario, J.G. Modeling Recommendations for the Educational Domain. Proceedings of the 1st Workshop Recommender Systems for Technology Enhanced Learning (RecSysTEL 2010), Barcelona, Spain, 29–30 September 2010; pp. 2793–2800.
Santos, O.C.; Mazzone, E.; Aguilar, M.J.; Boticario, J.G. Designing a user interface to managing recommendations for virtual learning communities. Int. J. Web Based Commun. 2011. in press.
Tintarev, N.; Masthoff, J. Designing and Evaluating Explanations for Recommender Systems. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Kantor, P.B., Eds.; Springer: Berlin, Germany, 2011; pp. 479–510.
[36]
Pérez-Marín, D.; Alfonseca, E.; Rodríguez, P.; Pascual-Nieto, I. Willow: Automatic and adaptive assessment of students free-text answers. Span. Soc. Nat. Lang. Proc. J. 2006, 37, 367–368.
[37]
Pascual-Nieto, I.; Santos, O.C.; Perez-Marin, D.; Boticario, J.G. Extending Computer Assisted Assessment systems with Natural Language Processing, User Modeling, and Recommendations based on Human Computer Interaction and Data Mining. Proceedings of the International Joint Conference on Artificial Intelligence, Barcelona, Spain, 19–22 July 2010; pp. 2519–2524.
[38]
Valdiviezo, P.M.; Santos, O.C.; Boticario, J.G. Aplicación de métodos de dise?o centrado en el usuario y minería de datos para definir recomendaciones que promuevan el uso del foro en una experiencia virtual de aprendizaje. Revista Iberoamericana de Educación a Distancia 2010, 13, 237–264.
[39]
Romero, C.; Ventura, S.; Delgado, J.A.; de Bra, P. Personalised Links Recommendation Based on Data Mining in Adaptive Educational Hypermedia Systems. Proceedings of Second European Conference on Technology Enhanced Learning, ECTEL 2007, Crete, Greece, 17–20 September 2007; pp. 292–306.
[40]
Swearingen, K.; Sinha, R. Beyond Algorithms: An HCI Perspective on Recommender Systems. Proceedings of the SIGIR 2001 Workshop on Recommender Systems, New Orleans, LA, USA, 13 September 2001. Volume 13, Number 5–6; pp. 393–408.
[41]
Santos, O.C.; Boticario, J.G. Users' Experience with a Recommender System in an Open Source Standards-Based LMS. Proceedings of 4th Symposium of the WG HCI and UE of the Austrian Computer Society—Usability and HCI for Education and Work (USAB 2008), Graz, Austria, 20–21 November 2008; pp. 185–204.
[42]
Kay, J. Stereotypes, Student Models and Scrutability. Lect. Notes Comp. Sci. 2000, 1839, 19–30.
[43]
M?dritscher, F. Towards a recommender strategy for personal learning environments. Proceedings of the 1st Workshop ‘Recommender Systems for Technology Enhanced Learning’ (RecSysTEL 2010), Barcelona, Spain, 19–22 July 2010; pp. 2775–2782.
[44]
Wilson, S.; Liber, O.; Johnson, M.; Beauvoir, P.; Sharples, P.; Milligan, C. Personal learning environments: Challenging the dominant design of educational systems. J. E-Learn. Knowl. Soc. 2007, 3, 27–38.