全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Algorithms  2011 

Goodness-of-Fit Tests For Elliptical and Independent Copulas through Projection Pursuit

DOI: 10.3390/a4020087

Keywords: copulas, goodness-of-fit, projection pursuit, elliptical distributions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two goodness-of-fit tests for copulas are being investigated. The first one deals with the case of elliptical copulas and the second one deals with independent copulas. These tests result from the expansion of the projection pursuit methodology that we will introduce in the present article. This method enables us to determine on which axis system these copulas lie as well as the exact value of these very copulas in the basis formed by the axes previously determined irrespective of their value in their canonical basis. Simulations are also presented as well as an application to real datasets.

References

[1]  Sklar, M. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. 1959, 8, 229–231.
[2]  Joe, H. Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability, 1st ed. ed.; Chapman and Hall/CRC: London, UK, 1997.
[3]  Nelsen, R.B. An introduction to Copulas. Springer Series in Statistics, 2nd ed. ed.; Springer: New York, NY, USA, 2006.
[4]  Carriere, J.F. A large sample test for one-parameter families of Copulas. Comm. Stat. Theor. Meth. 1994, 23, 1311–1317.
[5]  Genest, C.; Rémillard, B. Tests of independence and randomness based on the empirical Copula process. Test 2004, 13, 335–370.
[6]  Fermanian, J.D. Goodness of fit tests for copulas. J. Multivariate Anal. 2005, 95, 119–152.
[7]  Genest, C.; Quessy, J.F.; Rémillard, B. Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand. J. Stat. 2006, 33, 337–366.
[8]  Michiels, F.; De Schepper, A. A Copula Test Space Model—How to Avoid the Wrong Copula Choice. Kybernetika 2008, 44, 864–878.
[9]  Genest, C. Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour. Res. 2009, 43, W09401:1–W09401:12.
[10]  Mesfioui, M.; Quessy, J.F.; Toupin, M.H. On a new goodness-of-fit process for families of copulas. La Revue Canadienne de Statistique 2009, 37, 80–101.
[11]  Genest, C.; Rémillard, B. Goodness-of-fit tests for copulas: A review and a power study. Insurance: Math. Econ. 2009, 44, 199–213.
[12]  Berg, D. Copula goodness-of-fit testing: An overview and power comparison. Eur. J. Finance 2009, 15, 675–701.
[13]  Bücher, A.; Dette, H. Some comments on goodness-of-fit tests for the parametric form of the copula based on L2-distances. J. Multivar. Anal. 2010, 101, 749–763.
[14]  Broniatowski, M.; Leorato, S. An estimation method for the Neyman chi-square divergence with application to test of hypotheses. J. Multivar. Anal. 2006, 97, 1409–1436.
[15]  Friedman, J.H.; Stuetzle, W.; Schroeder, A. Projection pursuit density estimation. J. Am. Statist. Assoc. 1984, 79, 599–608.
[16]  Huber, P.J. Projection pursuit. Ann. Stat. 1985, 13, 435–525.
[17]  Cambanis, S.; Huang, S.; Simons, G. On the theory of elliptically contoured distributions. J. Multivar. Anal. 1981, 11, 368–385.
[18]  Landsman, Z.M.; Valdez, E.A. Tail conditional expectations for elliptical distributions. N. Am. Actuar. J. 2003, 7, 55–71.
[19]  Yohai, V.J. Optimal robust estimates using the Kullback-Leibler divergence. Stat. Probab. Lett. 2008, 78, 1811–1816.
[20]  Toma, A. Optimal robust M-estimators using divergences. Stat. Probab. Lett. 2009, 79, 1–5.
[21]  Huber, P.J. Robust Statistics; Wiley: New York, NY, USA, 1981. (republished in paperback, 2004).
[22]  van der Vaart, A.W. Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 1998.
[23]  Scott, D.W. Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics; A Wiley-Interscience Publication. John Wiley and Sons, Inc.: New York, NY, USA, 1992.
[24]  Touboul, J. Goodness-of-fit Tests For Elliptical And Independent Copulas Through Projection Pursuit. arXiv. Statistics Theory 2011. arXiv: 1103.0498.
[25]  Aurélien, A.; Damiano, B. New families of Copulas based on periodic functions. Commun. Stat. Theor. Meth. 2005, 34, 1437–1447.
[26]  Cressie, N.; Read, T.R.C. Multinomial goodness-of-fit tests. J. R. Stat. Soc. Series B 1984, 46, 440–464.
[27]  Csiszár, I. On topology properties of f-divergences. Studia Sci. Math. Hungar. 1967, 2, 329–339.
[28]  Liese, F.; Vajda, I. Convex Statistical Distances; BSB B. G. Teubner Verlagsgesellschaft: Leipzig, Germany, 1987.
[29]  Pardo, L. Statistical Inference Based on Divergence Measures. Statistics: Textbooks and Monographs; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006.
[30]  Zografos, K.; Ferentinos, K.; Papaioannou, T. φ-divergence statistics: sampling properties and multinomial goodness of fit and divergence tests. Commun. Stat. Theor. Meth. 1990, 19, 1785–1802.
[31]  Azé, D. Eléments D'analyse Convexe et Variationnelle, Ellipses; Dunod: Paris, French, 1997.
[32]  Bosq, D.; Lecoutre, J.P. Livre-Theorie De L'Estimation Fonctionnelle; Economica, 1999.
[33]  Broniatowski, M.; Keziou, A. Parametric estimation and tests through divergences and the duality technique. J. Multivar. Anal. 2009, 100, 16–36.
[34]  Black and Scholes. The pricing of options and corporate liabilities. J. Polit. Econ. 1973, 81, 635–654.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133