全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric?Imager

DOI: 10.3390/atmos3040591

Keywords: aerosols, remote sensing, polarization, underlying surface reflectance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF) model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm). A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof), possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

References

[1]  Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 129–234.
[2]  Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Mgmt. Assoc. 2006, 56, 709–742.
[3]  Hasekamp, O.P.; Landgraf, J. Retrieval of aerosol properties over land surfaces: Capabilities of multiple-viewing-angle intensity and polarization measurements. Appl. Opt. 2007, 46, 3332–3344, doi:10.1364/AO.46.003332.
[4]  Lebsock, M.D.; L’Ecuyer, T.; Stephens, G.L. Information content of near-infrared spaceborne multiangular polarization measurements for aerosol retrievals. J. Quant. Spectr. Rad. Transf. 2007, 111, 529–539.
[5]  Chowdhary, J.; Cairns, B.; Mishchenko, M.; Travis, L. Retrieval of aerosol properties over theocean using multispectral and multiangle photopolarimetric measurements from the research scanning polarimeter. Geophys. Res. Lett. 2001, 28, 243–246, doi:10.1029/2000GL011783.
[6]  Deuzé, J.L.; Bréon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; Tanré, D. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. 2001, 106, 4913–4926.
[7]  Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018, doi:10.5194/amt-4-975-2011.
[8]  Kalashnikova, O.; Kahn, R.; Sokolik, I.N.; Li, W.-H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: Optical models and retrievals of optically thick plumes. J. Geophys. Res. 2005, doi:10.1029/2004JD004550.
[9]  Kalashnikova, O.; Garay, M.; Davis, A.; Diner, D.; Martonchik, J. Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: Quantifying measurement uncertainties. J. Quant. Spectr. Rad. Transf. 2011, 112, 2149–2163, doi:10.1016/j.jqsrt.2011.05.010.
[10]  Hasekamp, O.; Litvinov, P.; Butz, A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements. J. Geophys. Res. 2011, doi:10.1029/2010JD015469.
[11]  Mishchenko, M.I.; Cairns, B.; Hansen, J.E.; Travis, L.D.; Burg, R.; Kaufman, Y.J.; Martins, J.V.; Shettle, E.P. Monitoring of aerosol forcing of climate from space: Analysis of measurement requirements. J. Quant. Spectr. Rad. Transf. 2004, 88, 149–161, doi:10.1016/j.jqsrt.2004.03.030.
[12]  National Research Council, Committee on Earth Science and Applications from Space. In Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond; The National Academies Press: Washington, DC, USA, 2007; pp. 89–91.
[13]  Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; Gordon, H.R.; Muller, J-P.; Myneni, R.B.; Sellers, P.J.; Pinty, P.; Verstraete, M. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1072–1087.
[14]  Grey, W.M.F.; North, P.R.J.; Los, S.O. Computationally efficient method for retrieving aerosol optical depth from ATSR-2 and AATSR data. Appl. Opt. 2006, 45, 2786–2795.
[15]  Flowerdew, R.J.; Haigh, J.D. An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers. Geophys. Res. Lett. 1995, 22, 1693–1696, doi:10.1029/95GL01662.
[16]  Diner, D.J.; Martonchik, J.V.; Kahn, R.A.; Pinty, B.; Gobron, N.; Nelson, D.L.; Holben, B.N. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens. Environ. 2005, 94, 155–171, doi:10.1016/j.rse.2004.09.009.
[17]  Diner, D.J.; Barge, L.M.; Bruegge, C.J.; Chrien, T.G.; Conel, J.E.; Eastwood, M.L.; Garcia, J.D.; Hernandez, M.A.; Kurzweil, C.G.; Ledeboer, W.C.; Pignatano, N.D.; Sarture, C.M.; Smith, B.G. The airborne multi-angle imaging spectroradiometer (AirMISR): Instrument description and first results. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1339–1349, doi:10.1109/36.701083.
[18]  Litvinov, P.; Hasekamp, O.; Cairns, B.; Mishchenko, M. Reflection models for soil and vegetation surfaces from multiple-viewing angle photopolarimetric measurements. Remote Sens. Environ. 2010, 115, 781–792.
[19]  Bréon, F.M.; Tanré, D.; Lecomte, P.; Herman, M. Polarized reflectance of bare soils and vegetation: Measurements and models. IEEE Trans. Geosci. Remote Sens. 1995, 33, 487–499, doi:10.1109/36.377949.
[20]  Waquet, F.; Léon, J.-F.; Cairns, B.; Goloub, P.; Deuzé, J.-L.; Auriol, F. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land. Appl. Opt. 2009, 48, 1228–1236, doi:10.1364/AO.48.001228.
[21]  Waquet, F.; Cairns, B.; Knobelspiesse, K.; Chowdhary, J.; Travis, L.D.; Schmid, B.; Mishchenko, M.I. Polarimetric remote sensing of aerosols over land. J. Geophys. Res. 2009, doi:10.1029/2008JD010619.
[22]  Schott, J.R. Polarimetric Bidirectional Reflectance Distribution Functions. In Fundamentals of Polarimetric Remote Sensing; SPIE Press: Bellingham, WA, USA, 2009; pp. 63–106.
[23]  Diner, D.J.; Davis, A.; Hancock, B.; Gutt, G.; Chipman, R.A.; Cairns, B. Dual photoelastic modulator-based polarimetric imaging concept for aerosol remote sensing. Appl. Opt. 2007, 46, 8428–8445, doi:10.1364/AO.46.008428.
[24]  Diner, D.J.; Davis, A.; Hancock, B.; Geier, S.; Rheingans, B.; Jovanovic, V.; Bull, M.; Rider, D.M.; Chipman, R.A.; Mahler, A.; McClain, S.C. First results from a dual photoelastic modulator-based polarimetric camera. Appl. Opt. 2010, 49, 2929–2946.
[25]  Mahler, A.; Diner, D.J.; Chipman, R.A. Analysis of static and time-varying polarization errors in the multiangle spectropolarimetric imager. Appl. Opt. 2011, 50, 2080–2087, doi:10.1364/AO.50.002080.
[26]  Plass, G.N.; Kattawar, G.W.; Hitzfelder, S.J. Multiple scattered radiation emerging from Rayleigh and continental haze layers. 2: Ellipticity and direction of polarization. Appl. Opt. 1976, 15, 1003–1010, doi:10.1364/AO.15.001003.
[27]  Kawata, Y. Circular polarization of sunlight reflected by planetary atmospheres. Icarus 1978, 33, 217–232, doi:10.1016/0019-1035(78)90035-0.
[28]  Goldstein, D. Polarized Light; Marcel Dekker: New York, NY, USA, 2003; pp. 31–64.
[29]  Diner, D.J; Pingree, P.J.; Chipman, R.A. Novel airborne imaging polarimeter undergoes flight testing. SPIE Newsroom 2011, doi:10.1117/2.1201111.003932.
[30]  Mahler, A.; Smith, P.K.; Chipman, R.A. Low polarization optical system design. Proc. SPIE 2007, doi:10.1117/12.734932.
[31]  Jovanovic, V.M.; Diner, D.J.; Davies, R. Challenges, Solutions, and Applications of Accurate Multiangle Image Registration: Lessons Learned from MISR. In Image Registration for Remote Sensing; Le Moigne, J., Netanyahu, N.S., Eastman, R.D., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 355–382.
[32]  Jovanovic, V.; Ledeboer, B.; Smyth, M.; Zong, J. Georectification of the Airborne Multi-angle Imaging SpectroRadiometer. Available online: trs-new.jpl.nasa.gov/dspace/handle/2014/13195 (accessed on 15 December 2012).
[33]  DeBoo, B.; Sasian, J.; Chipman, R. Depolarization of diffusely reflecting manmade objects. Appl. Opt. 2005, 44, 5434–5445, doi:10.1364/AO.44.005434.
[34]  Torrance, K.E.; Sparrow, E.M. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Amer. 1967, 57, 1105–1114, doi:10.1364/JOSA.57.001105.
[35]  Shell, J. Polarimetric Remote Sensing in the Visible to Near Infrared. Ph.D. Thesis, University of Rochester, Rochester, NY, USA, 2005.
[36]  Martonchik, J.V.; Diner, D.J.; Pinty, B.; Verstraete, M.M.; Myneni, R.B.; Knyazikhin, Y.; Gordon, H.R. Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1266–1281, doi:10.1109/36.701077.
[37]  Rahman, H.; Pinty, B.; Verstraete, M.M. Coupled surface-atmosphere reflectance (CSAR) model 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data. J. Geophys. Res. 1993, 98, 20791–20801, doi:10.1029/93JD02072.
[38]  Chipman, R.A. Mueller Matrices. In Handbook of Optics; McGraw-Hill: New York, NY, USA, 2009.
[39]  Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Amer. 1954, 44, 838–850, doi:10.1364/JOSA.44.000838.
[40]  Blinn, J. Models of Light Reflection for Computer Synthesized Pictures. In Proceeding of Special Interest Group on GRAPHics and Interactive Techniques (SIGGRAPH)’77, San Jose, CA, USA, 20-22 July 1977; pp. 192–198.
[41]  Cook, R.L.; Torrance, K.E. A reflectance model for computer graphics. ACM Trans. Graph. 1982, 1, 7–24, doi:10.1145/357290.357293.
[42]  Priest, R.G.; Meier, S.R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces. Opt. Eng. 2002, 41, 988–993, doi:10.1117/1.1467360.
[43]  Bréon, F.M. An analytical model for the cloud-free atmosphere/ocean system reflectance. Remote Sens. Environ. 1993, 43, 179–192, doi:10.1016/0034-4257(93)90007-K.
[44]  Priest, R.G.; Germer, T.A. Polarimetric BRDF in the Microfacet Model: Theory and Measurements. In Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, Ann Arbor, MI, USA, August 2000.
[45]  Stryjewski, J.; Hand, D.; Tyler, D.; Murali, S.; Roggemann, M.; Peterson, M. Microfacet Scattering Model For Pulse Polarization Ranging. In Proceeding of Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, Hawaii, USA, 1–4 September 2009.
[46]  Phong, B.T. Illumination for computer generated pictures. Commun. ACM 1975, 18, 311–317, doi:10.1145/360825.360839.
[47]  Thilak, V.; Voelz, D.G.; Creusere, C.D. Polarization-based index of refraction and reflection angle estimation for remote sensing applications. Appl. Opt. 2007, 46, 7527–7536, doi:10.1364/AO.46.007527.
[48]  Bohren, C.F.; Clothiaux, E.E. Polarization: The Hidden Variable. In Fundamentals of Atmospheric Radiation; Wiley-VCH: Weinheim, Germany, 2006; pp. 345–386.
[49]  Litvinov, P.; Hasekamp, O.; Dubovik, O.; Cairns, B. Model for land surface reflectance treatment: Physical derivation, application for bare soil and evaluation on airborne and satellite measurements. J. Quant. Spectr. Rad. Transf. 2012, 113, 2023–2039, doi:10.1016/j.jqsrt.2012.06.027.
[50]  Wehrli, C. Extraterrestrial Solar Spectrum; Physikalisch-Meteorologisches Observatorium Davos World Radiation Center: Davos Dorf, Switzerland, 1985.
[51]  Nadal, F.; Bréon, F-M. Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1709–1718, doi:10.1109/36.763292.
[52]  Maignan, F.; Bréon, F-M.; Fédèle, E.; Bouvier, M. Polarized reflectances of natural surfaces: Spaceborne measurements and analytical modeling. Remote Sens. Environ. 2009, 113, 2642–2650, doi:10.1016/j.rse.2009.07.022.
[53]  Litvinov, P.; Hasekamp, O.; Cairns, B. Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements. Remote Sens. Environ. 2011, 115, 781–792, doi:10.1016/j.rse.2010.11.005.
[54]  Xu, F.; Davis, A.B.; West, R.A.; Martonchik, J.V.; Diner, D.J. Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere overlying a polarizing surface. Opt. Lett. 2011, 36, 2083–2085, doi:10.1364/OL.36.002083.
[55]  Waquet, F.; Goloub, P.; Deuzé, J.-L.; Léon, J.-F.; Auriol, F.; Verwaerde, C.; Balois, J.-Y.; Fran?ois, P. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method. J. Geophys. Res. 2007, doi:10.1029/2006JD008029.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133