Botrytis cinerea is a necrotrophic fungus infecting over 230 plant species worldwide. This highly adaptable pathogen can afflict agricultural products from seed to storage, causing significant economic losses and instability in the food supply. Small protein virulence factors secreted by B. cinerea during infection play an important role in initiation and spread of disease. BcSnod1 was found to be abundantly expressed upon exposure to media containing strawberry extract. From sequence similarity, BcSnod2 was also identified and both were recognized as members of the Ceratoplatanin family of small phytotoxic proteins. Recombinant BcSnod1 was shown to have a phytotoxic effect and play an important role in pathogenicity while the role of BcSnod2 remains less clear. Both bacterial and yeast production systems are reported, though the bacterial protein is less toxic and mostly unfolded relative to that made in yeast. Compared to BcSnod1, recombinant bacterial BcSnod2 shows similar, but delayed phytotoxicity on tomato leaves. Further studies of these critical virulence factors and their inhibition promise to provide new avenues for crop protection.
References
[1]
Elad, Y. Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol. Rev. 1997, 72, 381–422, doi:10.1017/S0006323197005057.
[2]
Elad, Y.; Williamson, B.; Tudzynski, P.; Delen, N. Botrytis: Biology, Pathology and Control; Klewer Academic Publishers: Dordrecht, The Netherlands, 2004.
[3]
Williamson, B.; Tudzynski, B.; Tudzynski, P.; van Kan, J.A. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580, doi:10.1111/j.1364-3703.2007.00417.x.
[4]
Choquer, M.; Fournier, E.; Kunz, C.; Levis, C.; Pradier, J.M.; Simon, A.; Viaud, M. Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 2007, 277, 1–10, doi:10.1111/j.1574-6968.2007.00930.x.
[5]
Van Kan, J.A. Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 2006, 11, 247–253, doi:10.1016/j.tplants.2006.03.005.
[6]
Shah, P.; Atwood, J.A.; Orlando, R.; El Mubarek, H.; Podila, G.K.; Davis, M.R. Comparative proteomic analysis of Botrytis cinerea secretome. J. Proteome Res. 2009, 8, 1123–1130, doi:10.1021/pr8003002.
[7]
Espino, J.J.; Gutierrez-Sanchez, G.; Brito, N.; Shah, P.; Orlando, R.; Gonzalez, C. The Botrytis cinerea early secretome. Proteomics 2010, 10, 3020–3034, doi:10.1002/pmic.201000037.
[8]
Frias, M.; Gonzalez, C.; Brito, N. BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol. 2011, 192, 483–495, doi:10.1111/j.1469-8137.2011.03802.x.
[9]
Pazzagli, L.; Cappugi, G.; Manao, G.; Camici, G.; Santini, A.; Scala, A. Purification, characterization, and amino acid sequence of cerato-platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. platani. J. Biol. Chem. 1999, 274, 24959–24964.
[10]
Boddi, S.; Comparini, C.; Calamassi, R.; Pazzagli, L.; Cappugi, G.; Scala, A. Cerato-platanin protein is located in the cell walls of ascospores, conidia and hyphae of Ceratocystis fimbriata f. sp. platani. FEMS Microbiol. Lett. 2004, 233, 341–346, doi:10.1111/j.1574-6968.2004.tb09501.x.
[11]
Jeong, J.S.; Mitchell, T.K.; Dean, R.A. The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. FEMS Microbiol. Lett. 2007, 273, 157–165, doi:10.1111/j.1574-6968.2007.00796.x.
[12]
Wilson, L.M.; Idnurm, A.; Howlett, B.J. Characterization of a gene (sp1) encoding a secreted protein from Leptosphaeria maculans, the blackleg pathogen of Brassica napus. Mo. Plant Pathol. 2002, 3, 487–493, doi:10.1046/j.1364-3703.2002.00144.x.
[13]
Rathi, S. University of Alabama, Huntsville, AL, USA, 2012. Unpublished work.
[14]
Alfano, J.R.; Collmer, A. Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 2004, 42, 385–414, doi:10.1146/annurev.phyto.42.040103.110731.
[15]
El Mubarek, H.; Davis, M. Personal communication. University of Georgia: Athens, GA, USA, 2012.
[16]
Greenberg, J.T.; Yao, N. The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol. 2004, 6, 201–211, doi:10.1111/j.1462-5822.2004.00361.x.