It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell? technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10?7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.
References
[1]
Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M (1999) Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med 27: 393–408.
[2]
Danielson P (2009) Reviving the “biochemical” hypothesis for tendinopathy: new findings suggest the involvement of locally produced signal substances. Br J Sports Med 43: 265–268.
[3]
Khan KM, Cook JL, Maffulli N, Kannus P (2000) Where is the pain coming from in tendinopathy? It may be biochemical, not only structural, in origin. Br J Sports Med 34: 81–83.
[4]
Bjur D, Danielson P, Alfredson H, Forsgren S (2008) Presence of a non-neuronal cholinergic system and occurrence of up- and down-regulation in expression of M2 muscarinic acetylcholine receptors: new aspects of importance regarding Achilles tendon tendinosis (tendinopathy). Cell Tissue Res 331: 385–400.
[5]
Danielson P, Alfredson H, Forsgren S (2006) Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerve-related cholinergic effects in chronic painful patellar tendon tendinosis. Microsc Res Tech 69: 808–819.
[6]
Danielson P, Andersson G, Alfredson H, Forsgren S (2007) Extensive expression of markers for acetylcholine synthesis and of M2 receptors in tenocytes in therapy-resistant chronic painful patellar tendon tendinosis-a pilot study. Life Sci 80: 2235–2238.
[7]
Bjur D, Danielson P, Alfredson H, Forsgren S (2008) Immunohistochemical and in situ hybridization observations favor a local catecholamine production in the human Achilles tendon. Histol Histopathol 23: 197–208.
[8]
Danielson P, Alfredson H, Forsgren S (2007) Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man. Microsc Res Tech 70: 310–324.
[9]
Danielson P, Alfredson H, Forsgren S (2007) In situ hybridization studies confirming recent findings of the existence of a local nonneuronal catecholamine production in human patellar tendinosis. Microsc Res Tech 70: 908–911.
[10]
Scott A, Alfredson H, Forsgren S (2008) VGluT2 expression in painful Achilles and patellar tendinosis: evidence of local glutamate release by tenocytes. J Orthop Res 26: 685–692.
[11]
Andersson G, Danielson P, Alfredson H, Forsgren S (2008) Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. Regul Pept 150: 81–87.
[12]
Fan TP, Hu DE, Guard S, Gresham GA, Watling KJ (1993) Stimulation of angiogenesis by substance P and interleukin-1 in the rat and its inhibition by NK1 or interleukin-1 receptor antagonists. Br J Pharmacol 110: 43–49.
[13]
Burssens P, Steyaert A, Forsyth R, van Ovost EJ, Depaepe Y, et al. (2005) Exogenously administered substance P and neutral endopeptidase inhibitors stimulate fibroblast proliferation, angiogenesis and collagen organization during Achilles tendon healing. Foot Ankle Int 26: 832–839.
[14]
Carlsson O, Schizas N, Li J, Ackermann PW (2011) Substance P injections enhance tissue proliferation and regulate sensory nerve ingrowth in rat tendon repair. Scand J Med Sci Sports 21: 562–569.
[15]
Messner K, Wei Y, Andersson B, Gillquist J, Rasanen T (1999) Rat model of Achilles tendon disorder. A pilot study. Cells Tissues Organs 165: 30–39.
[16]
Schubert TE, Weidler C, Lerch K, Hofstadter F, Straub RH (2005) Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis 64: 1083–1086.
[17]
Forsgren S, Danielson P, Alfredson H (2005) Vascular NK-1 receptor occurrence in normal and chronic painful Achilles and patellar tendons: studies on chemically unfixed as well as fixed specimens. Regul Pept 126: 173–181.
[18]
Maggi CA (1995) The mammalian tachykinin receptors. General pharmacology 26: 911–944.
[19]
New DC, Wong YH (2007) Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2: 2.
[20]
Koon HW, Zhao D, Na X, Moyer MP, Pothoulakis C (2004) Metalloproteinases and transforming growth factor-alpha mediate substance P-induced mitogen-activated protein kinase activation and proliferation in human colonocytes. J Biol Chem 279: 45519–45527.
[21]
Yamaguchi K, Richardson MD, Bigner DD, Kwatra MM (2005) Signal transduction through substance P receptor in human glioblastoma cells: roles for Src and PKCdelta. Cancer Chemother Pharmacol 56: 585–593.
[22]
Goodman SA, May SA, Heinegard D, Smith RK (2004) Tenocyte response to cyclical strain and transforming growth factor beta is dependent upon age and site of origin. Biorheology 41: 613–628.
[23]
Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32: 435–446.
[24]
Andersson G, Forsgren S, Scott A, Gaida JE, Stjernfeldt JE, et al. (2011) Tenocyte hypercellularity and vascular proliferation in a rabbit model of tendinopathy: contralateral effects suggest the involvement of central neuronal mechanisms. Br J Sports Med 45: 399–406.
[25]
Backman C, Boquist L, Friden J, Lorentzon R, Toolanen G (1990) Chronic achilles paratenonitis with tendinosis: an experimental model in the rabbit. J Orthop Res 8: 541–547.
[26]
Backman LJ, Andersson G, Wennstig G, Forsgren S, Danielson P (2011) Endogenous substance P production in the Achilles tendon increases with loading in an in vivo model of tendinopathy-peptidergic elevation preceding tendinosis-like tissue changes. J Musculoskelet Neuronal Interact 11: 133–140.
[27]
Andersson G, Backman LJ, Scott A, Lorentzon R, Forsgren S, et al. (2011) Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model. Br J Sports Med 45: 1017–1022.
[28]
Scott A, Danielson P, Abraham T, Fong G, Sampaio AV, et al. (2011) Mechanical force modulates scleraxis expression in bioartificial tendons. J Musculoskelet Neuronal Interact 11: 124–132.
[29]
Koon HW, Zhao D, Zhan Y, Moyer MP, Pothoulakis C (2007) Substance P mediates antiapoptotic responses in human colonocytes by Akt activation. Proc Natl Acad Sci U S A 104: 2013–2018.
[30]
Corps AN, Jones GC, Harrall RL, Curry VA, Hazleman BL, et al. (2008) The regulation of aggrecanase ADAMTS-4 expression in human Achilles tendon and tendon-derived cells. Matrix Biol 27: 393–401.
[31]
Courneya JP, Luzina IG, Zeller CB, Rasmussen JF, Bocharov A, et al. (2010) Interleukins 4 and 13 modulate gene expression and promote proliferation of primary human tenocytes. Fibrogenesis Tissue Repair 3: 9.
[32]
de Mos M, Koevoet W, van Schie HT, Kops N, Jahr H, et al. (2009) In vitro model to study chondrogenic differentiation in tendinopathy. Am J Sports Med 37: 1214–1222.
[33]
Józsa L, Kannus P (1997) Human tendons: Anatomy, physiology, and pathology. Champaign, IL, USA: Human Kinetics. 574 p.
[34]
Kvist M, Jozsa L, Jarvinen MJ, Kvist H (1987) Chronic Achilles paratenonitis in athletes: a histological and histochemical study. Pathology 19: 1–11.
[35]
Zhang J, Wang JH (2010) Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord 11: 10.
[36]
Rufai A, Benjamin M, Ralphs JR (1992) Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl) 186: 611–618.
[37]
Docheva D, Hunziker EB, Fassler R, Brandau O (2005) Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25: 699–705.
[38]
Jelinsky SA, Archambault J, Li L, Seeherman H (2010) Tendon-selective genes identified from rat and human musculoskeletal tissues. J Orthop Res 28: 289–297.
[39]
Shukunami C, Takimoto A, Oro M, Hiraki Y (2006) Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 298: 234–247.
[40]
Santoni G, Amantini C, Lucciarini R, Pompei P, Perfumi M, et al. (2002) Expression of substance P and its neurokinin-1 receptor on thymocytes: functional relevance in the regulation of thymocyte apoptosis and proliferation. Neuroimmunomodulation 10: 232–246.
[41]
Fedorczyk JM, Barr AE, Rani S, Gao HG, Amin M, et al. (2010) Exposure-dependent increases in IL-1beta, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury. J Orthop Res 28: 298–307.
[42]
Lai JP, Lai S, Tuluc F, Tansky MF, Kilpatrick LE, et al. (2008) Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor. Proc Natl Acad Sci U S A 105: 12605–12610.
[43]
Tansky MF, Pothoulakis C, Leeman SE (2007) Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor. Proc Natl Acad Sci U S A 104: 10691–10696.
[44]
Lind H, Brudin L, Lindholm L, Edvinsson L (1996) Different levels of sensory neuropeptides (calcitonin gene-related peptide and substance P) during and after exercise in man. Clin Physiol 16: 73–82.
[45]
Cottrell GS, Padilla B, Pikios S, Roosterman D, Steinhoff M, et al. (2006) Ubiquitin-dependent down-regulation of the neurokinin-1 receptor. J Biol Chem 281: 27773–27783.
[46]
Bennett VJ, Perrine SA, Simmons MA (2002) A novel mechanism of neurokinin-1 receptor resensitization. J Pharmacol Exp Ther 303: 1155–1162.
[47]
Kahler CM, Herold M, Reinisch N, Wiedermann CJ (1996) Interaction of substance P with epidermal growth factor and fibroblast growth factor in cyclooxygenase-dependent proliferation of human skin fibroblasts. J Cell Physiol 166: 601–608.
[48]
Kahler CM, Herold M, Wiedermann CJ (1993) Substance P: a competence factor for human fibroblast proliferation that induces the release of growth-regulatory arachidonic acid metabolites. J Cell Physiol 156: 579–587.
[49]
Steyaert A, Burssens P, Forsyth R, Vanderstraeten G (2010) Qualitative analysis of substance P, NK1-receptor and nerve ingrowth in substance P-treated ruptured rat Achilles tendon. Acta Orthop Belg 76: 387–395.