[1] | Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21: 55–89.
|
[2] | McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5: 205–216.
|
[3] | McGaugh JL (2000) Memory--a century of consolidation. Science 287: 248–251.
|
[4] | de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269–301.
|
[5] | Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3: 453–462.
|
[6] | Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39.
|
[7] | Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19: 437–462.
|
[8] | Wiegert O, Joels M, Krugers H (2006) Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus. Learn Mem 13: 110–113.
|
[9] | Xu L, Holscher C, Anwyl R, Rowan MJ (1998) Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc Natl Acad Sci U S A 95: 3204–3208.
|
[10] | Kerr DS, Huggett AM, Abraham WC (1994) Modulation of hippocampal long-term potentiation and long-term depression by corticosteroid receptor activation. Psychobiology 22: 123–133.
|
[11] | Krugers HJ, Alfarez DN, Karst H, Parashkouhi K, van Gemert N, et al. (2005) Corticosterone shifts different forms of synaptic potentiation in opposite directions. Hippocampus 15: 697–703.
|
[12] | Karst H, Berger S, Turiault M, Tronche F, Schutz G, et al. (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A 102: 19204–19207.
|
[13] | Karst H, Joels M (2005) Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J Neurophysiol 94: 3479–3486.
|
[14] | Groc L, Choquet D, Chaouloff F (2008) The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci 11: 868–870.
|
[15] | Martin S, Henley JM, Holman D, Zhou M, Wiegert O, et al. (2009) Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PLoS ONE 4: e4714.
|
[16] | Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334: 33–46.
|
[17] | Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89: 4363–4367.
|
[18] | Takahashi T, Kimoto T, Tanabe N, Hattori TA, Yasumatsu N, et al. (2002) Corticosterone acutely prolonged N-methyl-d-aspartate receptor-mediated Ca2+ elevation in cultured rat hippocampal neurons. J Neurochem 83: 1441–1451.
|
[19] | Liu L, Wang C, Ni X, Sun J (2007) A rapid inhibition of NMDA receptor current by corticosterone in cultured hippocampal neurons. Neurosci Lett 420: 245–250.
|
[20] | Sato S, Osanai H, Monma T, Harada T, Hirano A, et al. (2004) Acute effect of corticosterone on N-methyl-D-aspartate receptor-mediated Ca2+ elevation in mouse hippocampal slices. Biochem Biophys Res Commun 321: 510–513.
|
[21] | Bellone C, Nicoll RA (2007) Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55: 779–785.
|
[22] | Bartanusz V, Aubry JM, Pagliusi S, Jezova D, Baffi J, et al. (1995) Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66: 247–252.
|
[23] | Krugers HJ, Koolhaas JM, Bohus B, Korf J (1993) A single social stress-experience alters glutamate receptor-binding in rat hippocampal CA3 area. Neurosci Lett 154: 73–77.
|
[24] | Gourley SL, Kedves AT, Olausson P, Taylor JR (2009) A history of corticosterone exposure regulates fear extinction and cortical NR2B, GluR2/3, and BDNF. Neuropsychopharmacology 34: 707–716.
|
[25] | Nair SM, Werkman TR, Craig J, Finnell R, Joels M, et al. (1998) Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons. J Neurosci 18: 2685–2696.
|
[26] | Weiland NG, Orchinik M, Tanapat P (1997) Chronic corticosterone treatment induces parallel changes in N-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the hippocampus. Neuroscience 78: 653–662.
|
[27] | Kamphuis PJ, Gardoni F, Kamal A, Croiset G, Bakker JM, et al. (2003) Long-lasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity: involvement of the NMDA receptor complex. FASEB J 17: 911–913.
|
[28] | Pavlides C, Ogawa S, Kimura A, McEwen BS (1996) Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res 738: 229–235.
|
[29] | Diamond DM, Bennett MC, Fleshner M, Rose GM (1992) Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2: 421–430.
|
[30] | Xu L, Anwyl R, Rowan MJ (1997) Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387: 497–500.
|
[31] | Shors TJ, Seib TB, Levine S, Thompson RF (1989) Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244: 224–226.
|
[32] | Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540.
|
[33] | Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, et al. (2004) Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity. Science 304: 1021–1024.
|
[34] | Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55: 1081–1094.
|
[35] | Fetterolf F, Foster KA (2011) Regulation of long-term plasticity induction by the channel and C-terminal domains of GluN2 subunits. Mol Neurobiol 44: 71–82.
|
[36] | Kopp C, Longordo F, Nicholson JR, Luthi A (2006) Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J Neurosci 26: 12456–12465.
|
[37] | Longordo F, Kopp C, Mishina M, Lujan R, Luthi A (2009) NR2A at CA1 synapses is obligatory for the susceptibility of hippocampal plasticity to sleep loss. J Neurosci 29: 9026–9041.
|
[38] | Fontan-Lozano A, Saez-Cassanelli JL, Inda MC, de los Santos-Arteaga M, Sierra-Dominguez SA, et al. (2007) Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J Neurosci 27: 10185–10195.
|
[39] | Qin Y, Karst H, Joels M (2004) Chronic unpredictable stress alters gene expression in rat single dentate granule cells. J Neurochem 89: 364–374.
|
[40] | Rey M, Carlier E, Talmi M, Soumireu-Mourat B (1994) Corticosterone effects on long-term potentiation in mouse hippocampal slices. Neuroendocrinology 60: 36–41.
|
[41] | Maggio N, Segal M (2007) Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus. J Neurosci 27: 5757–5765.
|
[42] | Droste SK, de GL, Lightman SL, Reul JM, Linthorst AC (2009) The ultradian and circadian rhythms of free corticosterone in the brain are not affected by gender: an in vivo microdialysis study in Wistar rats. J Neuroendocrinol 21: 132–140.
|
[43] | Kim JJ, Foy MR, Thompson RF (1996) Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc Natl Acad Sci U S A 93: 4750–4753.
|
[44] | Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117: 2505–2511.
|
[45] | Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, et al. (2009) Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc Natl Acad Sci U S A 106: 14075–14079.
|
[46] | Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, et al. (2011) Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry 16: 156–170.
|
[47] | Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, et al. (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283: 1285–1292.
|
[48] | Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, et al. (2005) Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25: 6907–6910.
|
[49] | Harney SC, Jane DE, Anwyl R (2008) Extrasynaptic NR2D-containing NMDARs are recruited to the synapse during LTP of NMDAR-EPSCs. J Neurosci 28: 11685–11694.
|
[50] | Laurie DJ, Bartke I, Schoepfer R, Naujoks K, Seeburg PH (1997) Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Mol Brain Res 51: 23–32.
|
[51] | MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522.
|
[52] | Karst H, Wadman WJ, Joels M (1994) Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons. Brain Res 649: 234–242.
|
[53] | Kerr DS, Campbell LW, Thibault O, Landfield PW (1992) Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging. Proc Natl Acad Sci U S A 89: 8527–8531.
|
[54] | Lourenco J, Cannich A, Carta M, Coussen F, Mulle C, et al. (2010) Synaptic activation of kainate receptors gates presynaptic CB(1) signaling at GABAergic synapses. Nat Neurosci 13: 197–204.
|
[55] | Ahmed T, Frey JU, Korz V (2006) Long-term effects of brief acute stress on cellular signaling and hippocampal LTP. J Neurosci 26: 3951–3958.
|
[56] | ffrench-Mullen JM (1995) Cortisol inhibition of calcium currents in guinea pig hippocampal CA1 neurons via G-protein-coupled activation of protein kinase C. J Neurosci 15: 903–911.
|
[57] | Yang CH, Huang CC, Hsu KS (2004) Behavioral stress modifies hippocampal synaptic plasticity through corticosterone-induced sustained extracellular signal-regulated kinase/mitogen-activated protein kinase activation. J Neurosci 24: 11029–11034.
|
[58] | Conboy L, Sandi C (2010) Stress at Learning Facilitates Memory Formation by Regulating AMPA Receptor Trafficking Through a Glucocorticoid Action. Neuropsychopharmacology 35: 674–685.
|
[59] | Wong M, Moss RL (1994) Patch-clamp analysis of direct steroidal modulation of glutamate receptor-channels. J Neuroendocrinol 6: 347–355.
|
[60] | Yang CH, Huang CC, Hsu KS (2005) Behavioral stress enhances hippocampal CA1 long-term depression through the blockade of the glutamate uptake. J Neurosci 25: 4288–4293.
|
[61] | Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10: 2385–2399.
|
[62] | Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5: 317–328.
|
[63] | Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53: 362–368.
|
[64] | Datson NA, Morsink MC, Meijer OC, de Kloet ER (2008) Central corticosteroid actions: Search for gene targets. Eur J Pharmacol 583: 272–289.
|
[65] | Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, et al. (2010) Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci U S A 107: 16697–16702.
|
[66] | Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, et al. (2007) Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology 52: 71–76.
|
[67] | Kohr G, Jensen V, Koester HJ, Mihaljevic ALA, Utvik JK, et al. (2003) Intracellular Domains of NMDA Receptor Subtypes Are Determinants for Long-Term Potentiation Induction. J Neurosci 23: 10791–10799.
|
[68] | Weitlauf C, Honse Y, Auberson YP, Mishina M, Lovinger DM, et al. (2005) Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent long-term potentiation. J Neurosci 25: 8386–8390.
|
[69] | Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401: 63–69.
|
[70] | Foster KA, McLaughlin N, Edbauer D, Phillips M, Bolton A, et al. (2010) Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci 30: 2676–2685.
|
[71] | Morice E, Billard JM, Denis C, Mathieu F, Betancur C, et al. (2007) Parallel loss of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia. Neuropsychopharmacology 32: 2108–2116.
|
[72] | Duffy S, Labrie V, Roder JC (2008) D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 33: 1004–1018.
|
[73] | Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, et al. (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27: 2846–2857.
|
[74] | Taghibiglou C, Martin HG, Lai TW, Cho T, Prasad S, et al. (2009) Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat Med 15: 1399–1406.
|
[75] | Tu W, Xu X, Peng L, Zhong X, Zhang W, et al. (2010) DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke. Cell 140: 222–234.
|
[76] | Taniguchi S, Nakazawa T, Tanimura A, Kiyama Y, Tezuka T, et al. (2009) Involvement of NMDAR2A tyrosine phosphorylation in depression-related behaviour. EMBO J 28: 3717–3729.
|
[77] | Boyce-Rustay JM, Holmes A (2006) Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31: 2405–2414.
|
[78] | Hammen C (2005) Stress and depression. Annu Rev Clin Psychol 1: 293–319.
|
[79] | Paykel ES (2003) Life events and affective disorders. Acta Psychiatr Scand Suppl. pp. 61–66.
|
[80] | Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48: 191–214.
|
[81] | Pittenger C, Sanacora G, Krystal JH (2007) The NMDA receptor as a therapeutic target in major depressive disorder. CNS Neurol Disord Drug Targets 6: 101–115.
|
[82] | Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30: 563–569.
|
[83] | Thomas-Crusells J, Vieira A, Saarma M, Rivera C (2003) A novel method for monitoring surface membrane trafficking on hippocampal acute slice preparation. J Neurosci Methods 125: 159–166.
|
[84] | Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nat Neurosci 12: 1491–1493.
|
[85] | Hallett PJ, Collins TL, Standaert DG, Dunah AW (2008) Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Curr Protoc Neurosci 1: 1–16.
|