It is valuable to extend genotyping studies of Helicobacter pylori to strains from indigenous communities across the world to better define adaption, evolution, and associated diseases. We aimed to genetically characterize both human individuals and their infecting H. pylori from indigenous communities of Mexico, and to compare them with those from other human groups. We studied individuals from three indigenous groups, Tarahumaras from the North, Huichols from the West and Nahuas from the center of Mexico. Volunteers were sampled at their community site, DNA was isolated from white blood cells and mtDNA, Y-chromosome, and STR alleles were studied. H. pylori was cultured from gastric juice, and DNA extracted for genotyping of virulence and housekeeping genes. We found Amerindian mtDNA haplogroups (A, B, C, and D), Y-chromosome DYS19T, and Amerindian STRs alleles frequent in the three groups, confirming Amerindian ancestry in these Mexican groups. Concerning H.pylori cagA phylogenetic analyses, although most isolates were of the Western type, a new Amerindian cluster neither Western nor Asian, was formed by some indigenous Mexican, Colombian, Peruvian and Venezuelan isolates. Similarly, vacA phylogenetic analyses showed the existence of a novel Amerindian type in isolates from Alaska, Mexico and Colombia. With hspA strains from Mexico and other American groups clustered within the three major groups, Asian, African or European. Genotyping of housekeeping genes confirmed that Mexican strains formed a novel Asian-related Amerindian group together with strains from remote Amazon Aborigines. This study shows that Mexican indigenous people with Amerindian markers are colonized with H. pylori showing admixture of Asian, European and African strains in genes known to interact with the gastric mucosa. We present evidence of novel Amerindian cagA and vacA alleles in indigenous groups of North and South America.
References
[1]
Linz B, Balloux F, Moodley Y, Manica A, Liu H, et al. (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445: 915–918.
[2]
Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, et al. (2003) Traces of human migrations in Helicobacter pylori populations. Science 299: 1582–1585.
[3]
Ghose C, Perez-Perez GI, Dominguez-Bello MG, Pride DT, Bravi CM, et al. (2002) East Asian genotypes of Helicobacter pylori strains in Amerindians provide evidence for its ancient human carriage. Proc Natl Acad Sci U S A 99: 15107–15111.
[4]
Yamaoka Y, Orito E, Mizokami M, Gutierrez O, Saitou N, et al. (2002) Helicobacter pylori in North and South America before Columbus. FEBS Lett 517: 180–184.
[5]
Raymond J, Thiberg JM, Chevalier C, Kalach N, Bergeret M, et al. (2004) Genetic and transmission analysis of Helicobacter pylori strains within a family. Emerg Infect Dis 10: 1816–1821.
[6]
McNulty SL, Mole BM, Dailidiene D, Segal I, Ally R, et al. (2004) Novel 180- and 480-base-pair insertions in African and African-American strains of Helicobacter pylori. J Clin Microbiol 42: 5658–5663.
[7]
Wirth T, Wang X, Linz B, Novick RP, Lum JK, et al. (2004) Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci U S A 101: 4746–4751.
[8]
Torroni A, Chen YS, Semino O, Santachiara-Beneceretti AS, Scott CR, et al. (1994) mtDNA and Y-chromosome polymorphisms in four Native American populations from southern Mexico. Am J Hum Genet 54: 303–318.
[9]
Fagundes NJ, Kanitz R, Eckert R, Valls AC, Bogo MR, et al. (2008) Mitochondrial population genomics supports a single pre-Clovis origin with a coastal route for the peopling of the Americas. Am J Hum Genet 82: 583–592.
[10]
Brown MD, Hosseini SH, Torroni A, Bandelt HJ, Allen JC, et al. (1998) mtDNA haplogroup X: An ancient link between Europe/Western Asia and North America?. Am J Hum Genet 63: 1852–1861.
[11]
Penaloza-Espinosa RI, Arenas-Aranda D, Cerda-Flores RM, Buentello-Malo L, Gonzalez-Valencia G, et al. (2007) Characterization of mtDNA haplogroups in 14 Mexican indigenous populations. Hum Biol 79: 313–320.
[12]
Sánchez-Boiso A, Pe?aloza-Espinosa RI, Castro-Sierra E, Cerda-Flores RM, Buentello-Malo L, et al. (2011) Genetic structure of three Native Mexican communities based on mtDNA haplogroups, and ABO, and Rh blood group systems. RIC (In press).
[13]
Guardado-Estrada M, Juarez-Torres E, Medina-Martinez I, Wegier A, Macías A, et al. (2009) A great diversity of Amerindian mitochondrial DNA ancestry is present in the Mexican mestizo population. J Hum Genet 54: 695–705.
Rangel-Villalobos H, Mu?oz-Valle JF, González-Martin A, Gorostiza A, Maga?a MT, et al. (2008) Genetic Admixture, Relatedness, and Structure Patterns Among Mexican Populations Revealed by the Y-Chromosome. Am J Phys Anthropol 135: 448–461.
[16]
Bonilla C, Gutiérrez G, Parra EJ, Kline C, Shriver MD (2005) Admixture analysis of a rural population of the state of Guerrero, Mexico. Am J Phys Anthropol 128(4): 861–869.
[17]
Zegura SL, Karafet TM, Zhivotovsky LA, Hammer MF (2004) High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas. Mol. Biol. Evol 21(1): 164–175.
[18]
Barrot C, Sánchez C, Ortega M, González-Martín A, Brand-Casadevall C, et al. (2005) Characterization of three Amerindian populations from Hidalgo State (Mexico) by 15 STR-PCR polymorphisms. Int J Legal Med 119(2): 111–115.
[19]
Juárez-Cedillo T, Zu?iga J, Acu?a-Alonzo V, Pérez-Hernández N, Rodríguez-Pérez JM, et al. (2008) Genetic admixture and diversity estimations in the Mexican Mestizo population from Mexico City using 15 STR polymorphic markers. Forensic Sci Int Genet 2(3): e37–9.
[20]
Reyes-Leon A, Atherton JC, Argent RH, Puente JL, Torres J (2007) Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and its association with diversity in the cagA gene. Infect Immun 75: 3445–3454.
[21]
Suzuki M, Kiga K, Kersulyte D, Cok J, Hooper CC, et al. (2011) Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon. J Biol Chem doi/101074/ jbc.M111.263715:
[22]
Alm RA, Ling LS, Moir DT, King BL, Brown ED, et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176–180.
[23]
Mazieres S, Guitard E, Crubezy E, Dugoujon JM, Bortolini MC, et al. (2008) Uniparental (mtDNA, Y-chromosome) polymorphisms in French Guiana and two related populations--implications for the region's colonization. Ann Hum Genet 72: 145–156.
[24]
Wallace DC, Torroni A (1992) American Indian prehistory as written in the mitochondrial DNA: a review. Hum Biol 64: 403–416.
[25]
Rubi-Castellanos R, Martinez-Cortes G, Munoz-Valle JF, Gonzalez-Martin A, Cerda-Flores RM, et al. (2009) Pre-Hispanic Mesoamerican demography approximates the present-day ancestry of Mestizos throughout the territory of Mexico. Am J Phys Anthropol 139: 284–294.
[26]
Lisker R, Ramirez E, Babinsky V (1996) Genetic structure of autochthonous populations of Meso-America: Mexico. Hum Biol 68: 395–404.
[27]
Gonzalez-Valencia G, Atherton JC, Munoz O, Dehesa M, la Garza AM, et al. (2000) Helicobacter pylori vacA and cagA genotypes in Mexican adults and children. J Infect Dis 182: 1450–1454.
[28]
Mane SP, Dominguez-Bello MG, Blaser MJ, Sobral BW, Hontecillas R, et al. (2010) Host-interactive genes in Amerindian Helicobacter pylori diverge from their Old World homologs and mediate inflammatory responses. J Bacteriol 192: 3078–3092.
[29]
Torroni A, Neel JV, Barrantes R, Schurr TG, Wallace DC (1994) Mitochondrial DNA “clock” for the Amerindians and its implication for timing their entry into North America. Proc Natl Acad Sci USA 91: 1158–1162.
[30]
Schauer K, Muller C, Carriere M, Labigne A, Cavazza C, et al. (2010) The Helicobacter pylori GroES Cochaperonin HspA Functions as a Specialized Nickel Chaperone and Sequestration Protein through Its Unique C-Terminal Extension. J Bacteriol 192: 1231–1237.
[31]
Spohn G, Delany I, Rappuoli R, Scarlato V (2002) Characterization of the HspR-Mediated Stress Response in Helicobacter pylori. J Bacteriol 184: 2925–2930.
[32]
Kersulyte D, Kalia A, Gilman RH, Mendez M, Herrera P, et al. (2010) Helicobacter pylori from Peruvian Amerindians: Traces of Human Migrations in Strains from Remote Amazon, and Genome Sequence of an Amerind Strain. PLoS One 5(11): e15076. Doi:10.1371.
[33]
Romo-Gonzalez C, Salama NR, Burgeno-Ferreira J, Ponce-Castaneda V, Lazcano-Ponce E, et al. (2009) Differences in genome content among Helicobacter pylori isolates from patients with gastritis, duodenal ulcer, or gastric cancer reveal novel disease-associated genes. Infect Immun 77: 2201–2211.
[34]
Torres J, Camorlinga M, Perez-Perez G, Gonzalez G, Mu?oz O (2001) Validation of the string test for the recovery of Helicobacter pylori from gastric secretions, and its correlation with urea breath test, serology, and gastric pH. J Clin Microbiol 39: 1650–1651.
[35]
Moraga ML, Rocco P, Miquel JF, Nervi F, Llop E, et al. (2000) Mitochondrial DNA polymorphisms in Chilean aboriginal populations: implications for the peopling of the southern cone of the continent. Am J Phys Anthropol 113: 19–29.
[36]
Lell JT, Brown MD, Schurr TG, Sukernik RI, Starikovskaya YB, et al. (1997) Y chromosome polymorphisms in native American and Siberian populations: identification of native American Y chromosome haplotypes. Hum Genet 100: 536–543.
[37]
Azuma T, Kato S, Zhou W, Yamazaki S, Yamakawa A, et al. (2004) Diversity of vacA and cagA genes of Helicobacter pylori in Japanese children. Aliment Pharmacol Ther 20: Suppl 17–12.
[38]
Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, et al. (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci U S A 97: 14668–14673.
[39]
Israel DA, Salama N, Arnold CN, Moss SF, Ando T, et al. (2001) Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest 107: 611–620.