全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Semaphorin 3A Contributes to Distal Pulmonary Epithelial Cell Differentiation and Lung Morphogenesis

DOI: 10.1371/journal.pone.0027449

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rationale Semaphorin 3A (Sema3A) is a neural guidance cue that also mediates cell migration, proliferation and apoptosis, and inhibits branching morphogenesis. Because we have shown that genetic deletion of neuropilin-1, which encodes an obligatory Sema3A co-receptor, influences airspace remodeling in the smoke-exposed adult lung, we sought to determine whether genetic deletion of Sema3A altered distal lung structure. Methods To determine whether loss of Sema3A signaling influenced distal lung morphology, we compared pulmonary histology, distal epithelial cell morphology and maturation, and the balance between lung cell proliferation and death, in lungs from mice with a targeted genetic deletion of Sema3A (Sema3A-/-) and wild-type (Sema3A+/+) littermate controls. Results Genetic deletion of Sema3A resulted in significant perinatal lethality. At E17.5, lungs from Sema3A-/- mice had thickened septae and reduced airspace size. Distal lung epithelial cells had increased intracellular glycogen pools and small multivesicular and lamellar bodies with atypical ultrastructure, as well as reduced expression of type I alveolar epithelial cell markers. Alveolarization was markedly attenuated in lungs from the rare Sema3A-/- mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death. Conclusions These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury.

References

[1]  Hinck L (2004) The versatile roles of “axon guidance” cues in tissue morphogenesis. Dev Cell 7: 783–793.
[2]  Neufeld G, Shraga-Heled N, Lange T, Guttmann-Raviv N, Herzog Y, et al. (2005) Semaphorins in cancer. Front Biosci 10: 751–760.
[3]  Tran TS, Rubio ME, Clem RL, Johnson D, Case L, et al. (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462: 1065–1069.
[4]  Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, et al. (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12: 1380–1389.
[5]  Suzuki K, Kumanogoh A, Kikutani H (2008) Semaphorins and their receptors in immune cell interactions. Nat Immunol 9: 17–23.
[6]  Schwarz Q, Maden CH, Vieira JM, Ruhrberg C (2009) Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci U S A 106: 6164–6169.
[7]  Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23: 263–292.
[8]  Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, et al. (1997) Neuropilin is a semaphorin III receptor. Cell 90: 753–762.
[9]  Chen H, He Z, Tessier-Lavigne M (1998) Axon guidance mechanisms: semaphorins as simultaneous repellents and anti-repellents. Nat Neurosci 1: 436–439.
[10]  Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, et al. (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12: 13–19.
[11]  He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90: 739–751.
[12]  Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404: 567–573.
[13]  Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL (2001) Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293: 872–875.
[14]  Bagnard D, Vaillant C, Khuth ST, Dufay N, Lohrum M, et al. (2001) Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 21: 3332–3341.
[15]  Catalano A, Caprari P, Rodilossi S, Betta P, Castellucci M, et al. (2004) Cross-talk between vascular endothelial growth factor and semaphorin-3A pathway in the regulation of normal and malignant mesothelial cell proliferation. Faseb J 18: 358–360.
[16]  Gagliardini V, Fankhauser C (1999) Semaphorin III can induce death in sensory neurons. Mol Cell Neurosci 14: 301–316.
[17]  Guttmann-Raviv N, Shraga-Heled N, Varshavsky A, Guimaraes-Sternberg C, Kessler O, et al. (2007) Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. J Biol Chem 282: 26294–26305.
[18]  Ito T, Kagoshima M, Sasaki Y, Li C, Udaka N, et al. (2000) Repulsive axon guidance molecule Sema3A inhibits branching morphogenesis of fetal mouse lung. Mech Dev 97: 35–45.
[19]  Le A, Zielinski R, He C, Crow MT, Biswal S, et al. (2009) Pulmonary epithelial neuropilin-1 deletion enhances development of cigarette smoke-induced emphysema. Am J Respir Crit Care Med 180: 396–406.
[20]  Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, et al. (1997) Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19: 519–530.
[21]  Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383: 525–528.
[22]  McGrath-Morrow S, Lauer T, Yee M, Neptune E, Podowski M, et al. (2009) Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 296: L565–573.
[23]  Feiner L, Koppel AM, Kobayashi H, Raper JA (1997) Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons in situ. Neuron 19: 539–545.
[24]  Metzger DE, Stahlman MT, Shannon JM (2008) Misexpression of ELF5 disrupts lung branching and inhibits epithelial differentiation. Dev Biol 320: 149–160.
[25]  Mason RJ, Nellenbogen J, Clements JA (1976) Isolation of disaturated phosphatidylcholine with osmium tetroxide. J Lipid Res 17: 281–284.
[26]  Chung L, Yang TL, Huang HR, Hsu SM, Cheng HJ, et al. (2007) Semaphorin signaling facilitates cleft formation in the developing salivary gland. Development 134: 2935–2945.
[27]  Reidy KJ, Villegas G, Teichman J, Veron D, Shen W, et al. (2009) Semaphorin3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development 136: 3979–3989.
[28]  Tufro A, Teichman J, Woda C, Villegas G (2008) Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 125: 558–568.
[29]  Kagoshima M, Ito T, Kitamura H, Goshima Y (2001) Deverse gene expression and function of semaphorins in developing lung: positive and negative regulatory roles of semaphorins in lung branching morphogenesis. Genes to Cells 6: 559–571.
[30]  Dang TP, Eichenberger S, Gonzalez A, Olson S, Carbone DP (2003) Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene 22: 1988–1997.
[31]  Martis PC, Whitsett JA, Xu Y, Perl AK, Wan H, et al. (2006) C/EBPalpha is required for lung maturation at birth. Development 133: 1155–1164.
[32]  O'Brien KB, Alberich-Jorda M, Yadav N, Kocher O, Diruscio A, et al. (2010) CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 137: 2147–2156.
[33]  Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, et al. (2004) Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131: 953–964.
[34]  Wan H, Luo F, Wert SE, Zhang L, Xu Y, et al. (2008) Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development 135: 2563–2572.
[35]  Ramirez MI, Millien G, Hinds A, Cao Y, Seldin DC, et al. (2003) T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 256: 61–72.
[36]  Basseres DS, Levantini E, Ji H, Monti S, Elf S, et al. (2006) Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPalpha in mice. Mol Cell Biol 26: 1109–1123.
[37]  Wan H, Xu Y, Ikegami M, Stahlman MT, Kaestner KH, et al. (2004) Foxa2 is required for transition to air breathing at birth. Proc Natl Acad Sci U S A 101: 14449–14454.
[38]  Yadav N, Lee J, Kim J, Shen J, Hu MC, et al. (2003) Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc Natl Acad Sci U S A 100: 6464–6468.
[39]  Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, et al. (2010) Lung organogenesis. Curr Top Dev Biol 90: 73–158.
[40]  Srisuma S, Bhattacharya S, Simon DM, Solleti SK, Tyagi S, et al. (2010) Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis. Am J Respir Crit Care Med 181: 838–850.
[41]  Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A, et al. (2003) Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev Biol 255: 77–98.
[42]  Shoji W, Isogai S, Sato-Maeda M, Obinata M, Kuwada JY (2003) Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos. Development 130: 3227–3236.
[43]  Torres-Vazquez J, Gitler AD, Fraser SD, Berk JD, Van NP, et al. (2004) Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 7: 117–123.
[44]  Cimato T, Beers J, Ding S, Ma M, McCoy JP, et al. (2009) Neuropilin-1 identifies endothelial precursors in human and murine embryonic stem cells before CD34 expression. Circulation 119: 2170–2178.
[45]  Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, et al. (1999) VEGF is required for growth and survival in neonatal mice. Development 126: 1149–1159.
[46]  Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, et al. (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279: L600–607.
[47]  Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18: 8–23.
[48]  Yao H, Yang SR, Edirisinghe I, Rajendrasozhan S, Caito S, et al. (2008) Disruption of p21 attenuates lung inflammation induced by cigarette smoke, LPS, and fMLP in mice. Am J Respir Cell Mol Biol 39: 7–18.
[49]  Giordano RJ, Lahdenranta J, Zhen L, Chukwueke U, Petrache I, et al. (2008) Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. J Biol Chem 283: 29447–29460.
[50]  Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Moore M, Sullivan A, et al. (2005) An animal model of autoimmune emphysema. Am J Respir Crit Care Med 171: 734–742.
[51]  Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, et al. (2003) Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 29: 88–97.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133