全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Adapted to Roar: Functional Morphology of Tiger and Lion Vocal Folds

DOI: 10.1371/journal.pone.0027029

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vocal production requires active control of the respiratory system, larynx and vocal tract. Vocal sounds in mammals are produced by flow-induced vocal fold oscillation, which requires vocal fold tissue that can sustain the mechanical stress during phonation. Our understanding of the relationship between morphology and vocal function of vocal folds is very limited. Here we tested the hypothesis that vocal fold morphology and viscoelastic properties allow a prediction of fundamental frequency range of sounds that can be produced, and minimal lung pressure necessary to initiate phonation. We tested the hypothesis in lions and tigers who are well-known for producing low frequency and very loud roaring sounds that expose vocal folds to large stresses. In histological sections, we found that the Panthera vocal fold lamina propria consists of a lateral region with adipocytes embedded in a network of collagen and elastin fibers and hyaluronan. There is also a medial region that contains only fibrous proteins and hyaluronan but no fat cells. Young's moduli range between 10 and 2000 kPa for strains up to 60%. Shear moduli ranged between 0.1 and 2 kPa and differed between layers. Biomechanical and morphological data were used to make predictions of fundamental frequency and subglottal pressure ranges. Such predictions agreed well with measurements from natural phonation and phonation of excised larynges, respectively. We assume that fat shapes Panthera vocal folds into an advantageous geometry for phonation and it protects vocal folds. Its primary function is probably not to increase vocal fold mass as suggested previously. The large square-shaped Panthera vocal fold eases phonation onset and thereby extends the dynamic range of the voice.

References

[1]  Jiang JJ, Titze IR (1994) Measurement of vocal fold intraglottal pressure and impact stress. J Voice 8: 132–144.
[2]  Riede T, Lingle S, Hunter EJ, Titze IR (2010) Cervids with different vocal behavior demonstrate different viscoelastic properties of their vocal folds. J Morphology 27: 1–11.
[3]  Riede T, Titze IR (2008) Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni) - producing high fundamental frequency vocalization with a very long vocal fold. The J Exp Biol 211: 2144–2154.
[4]  Alipour F, Jaiswal S (2008) Phonatory characteristics of exscised pig, sheep, and cow larynges. J Acoust Soc Am 123: 4572–4581.
[5]  Chan RW, Fu M, Young L, Tirunagari N (2007) Relative contributions of collagen and elastin to elasticity of the vocal fold under tension. Ann Biomed Eng 35: 1471–1483.
[6]  Riede T (2010) Elasticity and stress relaxation of rhesus monkey (Macaca mulatta) vocal folds. J Exp Biol 213: 2924–2932.
[7]  Alipour F, Jaiswal S, Vigmostad S (2011) Vocal fold elasticity in the pig, sheep and cow larynges. J Voice 25: 130–136.
[8]  Riede T, York A, Furst S, Müller R, Seelecke S (2011) Elasticity and stress relaxation of a very small vocal fold. J Biomechanics 44: 1936–1940.
[9]  Titze IR, Fitch WT, Hunter EJ, Alipour F, Montequin D, et al. (2010) Vocal power and glottal efficiency in excised tiger larynges. J Exp Biol 213: 3866–3873.
[10]  Hast MH (1989) The Larynx of Roaring and Non-Roaring Cats. J Anat 163: 117–121.
[11]  Bless DM, Welham NV, Hirano S, Nagai H, Montequin DW, et al. (2004) Growth factor therapy for vocal fold scarring in a canine model. Ann Otol Rhinol Laryngol 113: 777–785.
[12]  Ishizaka K, Matsudaira M (1968) Analysis of the vibration of the vocal cords. J Acoust Soc Japan 24: 311–312.
[13]  Titze IR (1988) The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am 83: 1536–1552.
[14]  Titze IR (1989) On the relation between subglottal pressure and fundamental 728 frequency in phonation. J Acoust Soc Am 85: 901–906, 1989.
[15]  Committee on Low-Frequency and Marine Mammals, National Research Council (1994) Low-Frequency Sound and Marine Mammals: Current Knowledge and Research Needs. Washington, D.C.: The National Academy Press. 92 p.
[16]  Larom D, Garstang M, Payne K, Raspet R, Lindeque M (1997) The influence of surface atmospheric conditions on the range and area reached by animal vocalizations. J Exp Biol 200: 421–431.
[17]  Peters G (1978a) Vergleichende Untersuchung zur Lautgebung einiger Feliden (Mammalia, Felidae). Spixiana Suppl. 1: 1–206.
[18]  Pfefferele D, West PM, Grinnell J, Packer C, Fischer J (2007) Do acoustic features of lion, Panthera leo, roars reflect sex and male condition? J Acoust Soc Am 121: 3947–3953.
[19]  Walsh EJ, Armstrong DL, McGee J (2011) Tiger bioacoustics: An overview of vocalization acoustics and hearing in Panthera tigris. Third International Symposium on Acoustic Communication by Animals 173–174.
[20]  Hunter EJ, Titze IR (2007) Refinements in modeling the passive properties of laryngeal soft tissue. J Appl Physiol 103: 206–219.
[21]  Selbie WS, Zhang L, Levine WS, Ludlow CL (1998) Using joint geometry to determine the motion of the cricoarytenoid joint. J Acoust Soc Am 103: 1115–1127.
[22]  Gommel A, Butenweg C, Bolender K, Grunendahl A (2007) A muscle controlled finite-element model of laryngeal abduction and adduction. Comput Methods Biomech Biomed Engin 10: 377–388.
[23]  Alipour F, Berry DA, Titze IR (2000) A finite-element model of vocal-fold vibration. J Acoust Soc Am 108: 3003–3012.
[24]  Hahn MS, Teply BA, Stevens MM, Zeitels SM, Langer R (2006) Collagen composite hydrogels for vocal fold lamina propria restoration. Biomaterials 27: 1104–1109.
[25]  Hahn MS, Jao CY, Faquin W, Grande-Allen KJ (2008) Glycosaminoglycan composition of the vocal fold lamina propria in relation to function. Ann Otol Rhinol Laryngol 117: 371–381.
[26]  Hahn MS, Kobler JB, Zeitels SM, Langer R (2005) Midmembranous vocal fold lamina propria proteoglycans across selected species. Ann Otol Rhinol Laryngol 114: 451–462.
[27]  Kurita S, Nagata K, Hirano M (1983) A comparative study of the layer structure of the vocal fold. In Vocal Fold Physiology: Contemporary Research and Clinical Issues (ed. D. M. Bless and J. H. Abbs), pp. 3–21. San Diego: College Hill Press.
[28]  Titze IR (2011) Vocal fold mass is not a useful quantity for describing F0 in vocalization. J Speech Lang Hear Res 54: 520–522.
[29]  Chan RW, Titze IR (2003) Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Ann Biomed Eng 31: 482–491.
[30]  Tayama N, Chan RW, Kaga K, Titze IR (2002) Functional definitions of vocal fold geometry for laryngeal biomechanical modeling. Ann Otol Rhinol Laryngol 111: 83–92.
[31]  Min Y, Titze IR, Alipour-Haghighi F (1995) Stress-strain response of the human vocal fold ligament. Ann Otol Rhinol Laryngol 104: 563–569.
[32]  Klemuk SA, Titze IR (2004) Viscoelastic properties of three vocal-fold injectable biomaterials at low audio frequencies. Laryngoscope 114: 1597–1603.
[33]  Thibeault SL, Klemuk SA, Smith ME, Leugers C, Prestwich G (2009) In vivo comparison of biomimetic approaches for tissue regeneration of the scarred vocal fold. Tissue Engineering: Part A 15: 1481–1487.
[34]  Klemuk SA, Lu X, Hoffman HT, Titze IR (2010) Phonation threshold pressure predictions using viscoelastic properties up to 1,400 Hz of injectables intended for Reinke's space. Laryngoscope 120: 995–1001.
[35]  Schrag JL (1977) Deviation of velocity gradient profiles from the “gap loading” and “surface loading” limits in dynamic simple shear experiments. Trans Soc Rheol 21: 399–413.
[36]  Chan RW, Titze IR (2006) Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics. J Acoust Soc Am 119: 2351–2362.
[37]  Bevington PR, Robinson KD (1992) Data Reduction and Error Analysis for the Physical Sciences. (2nd ed.). New York: McGraw-Hill, Inc.
[38]  Holbrook KA, Odland GF (1974) Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J Investig Dermatol 62: 415–422.
[39]  Chan RW, Titze IR (1998) Viscosities of implantable biomaterials in vocal fold augmentation surgery. Laryngoscope 108: 725–731.
[40]  Geerligs M, Peters WM, Ackerman PAJ, Oomens CWJ, Baaijens FPT (2008) Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45: 677–688.
[41]  McComb K, Packer C, Pusey A (1994) Roaring and numerical assessment in contests between groups of female lions, Panthera Leo. Anim Behav 47: 379–387.
[42]  Schaller GB (1972) The Serengeti Lion. Chicago, London: The University of Chicago Press. 473 p.
[43]  Grinnell J, Packer C, Pusey AE (1995) Cooperation in male lions: kinship, reciprocity or mutualism? Anim Behav 49: 95–105.
[44]  Peters G (2011) Dominant frequency of loud mew calls of felids (Mammalia: Carnivora) decreases during ontogenetic growth. Mammal Review 41: 54–74.
[45]  Titze IR, Riede T (2010) : A Cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies. PLoS Computational Biology 6(8): e1000897.
[46]  Zuk PA, Zhu M, Mizano H, Huang J, Futrell JW, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering 7: 211–228.
[47]  Cicero VL, Montelatici E, Cantarella G, Mazzola R, Sambataro G, et al. (2008) Do mesenchymal stem cells play a role in vocal fold fat graft survival. Cell Proliferation 41: 460–473.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133